scholarly journals Nest Marking Behavior and Chemical Composition of Olfactory Cues Involved in Nest Recognition inMegachile rotundata

2013 ◽  
Vol 42 (4) ◽  
pp. 779-789 ◽  
Author(s):  
Christelle Guédot ◽  
James S. Buckner ◽  
Marcia M. Hagen ◽  
Jordi Bosch ◽  
William P. Kemp ◽  
...  
2002 ◽  
Vol 205 (16) ◽  
pp. 2519-2523 ◽  
Author(s):  
Francesco Bonadonna ◽  
Vincent Bretagnolle

SUMMARY Many burrowing petrels are able to return to their nests in complete darkness. The well-developed anatomy of their olfactory system and the attraction that food-related odour cues have for some petrel species suggest that olfaction may be used to recognize the burrow. In contrast,surface-nesting petrels may rely on visual cues to recognise their nest. We performed experiments on nine species of petrel (with different nesting habits) rendered anosmic either by plugging the nostrils or by injecting zinc sulphate onto the nasal epithelium. Compared with shamtreated control birds,we found that anosmia impaired nest recognition only in species that nest in burrows and that return home in darkness. Therefore, petrels showing nocturnal activity on land may rely on their sense of smell to find their burrows, while petrels showing diurnal activity or surface nesters may disregard olfactory cues in favour of visual guidance.


PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e36615 ◽  
Author(s):  
E. Tobias Krause ◽  
Barbara A. Caspers

Behaviour ◽  
2003 ◽  
Vol 140 (7) ◽  
pp. 925-933 ◽  
Author(s):  
Belén Belliure ◽  
Eduardo Mínguez ◽  
Ana De León

AbstractIn common with many other species of Procellariform, the European storm-petrel (Hydrobates pelagicus) has a well-developed olfactory anatomy, and chicks are able to recognize their own nests by smell. However, it is not known which olfactory cues these birds use to locate their burrows. To find out if body scent is one of these olfactory cues we used a T-maze device to perform three different preference tests. Chicks were allowed to choose between their own odour plus their nest, and a neutral odour; between their own odour and a neutral odour (far from any nest); and finally between their own odour and the body scent of a conspecific chick. Storm-petrel chicks can apparently recognize their own body odour, even when tested against the body scent of a conspecific. Individually distinctive odours may play an important role in facilitating nest recognition. The results indicate self-odour recognition, and suggest that individual odour recognition could play an important role in social relationships of storm-petrels.


2006 ◽  
Vol 31 (2) ◽  
pp. 110-119 ◽  
Author(s):  
Christelle Guedot ◽  
Theresa L. Pitts-Singer ◽  
James S. Buckner ◽  
Jordi Bosch ◽  
William P. Kemp

2010 ◽  
Vol 7 (2) ◽  
pp. 184-186 ◽  
Author(s):  
Barbara A. Caspers ◽  
E. Tobias Krause

Passerine birds have an extensive repertoire of olfactory receptor genes. However, the circumstances in which passerine birds use olfactory signals are poorly understood. The aim of this study is to investigate whether olfactory cues play a role in natal nest recognition in fledged juvenile passerines. The natal nest provides fledglings with a safe place for sleeping and parental food provisioning. There is a particular demand in colony-breeding birds for fledglings to be able to identify their nests because many pairs breed close to each other. Olfactory orientation might thus be of special importance for the fledglings, because they do not have a visual representation of the nest site and its position in the colony when leaving the nest for the first time. We investigated the role of olfaction in nest recognition in zebra finches, which breed in dense colonies of up to 50 pairs. We performed odour preference tests, in which we offered zebra finch fledglings their own natal nest odour versus foreign nest odour. Zebra finch fledglings significantly preferred their own natal nest odour, indicating that fledglings of a colony breeding songbird may use olfactory cues for nest recognition.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1976 ◽  
Vol 32 ◽  
pp. 343-349
Author(s):  
Yu.V. Glagolevsky ◽  
K.I. Kozlova ◽  
V.S. Lebedev ◽  
N.S. Polosukhina

SummaryThe magnetic variable star 21 Per has been studied from 4 and 8 Å/mm spectra obtained with the 2.6 - meter reflector of the Crimean Astrophysical Observatory. Spectral line intensities (Wλ) and radial velocities (Vr) have been measured.


Author(s):  
J.R. Mcintosh

The mitotic apparatus is a structure of obvious biological and medical interest, but it has proved to be a difficult cellular machine to understand. The chemical composition of the spindle is only slightly elucidated, largely because of the difficulties in preparing useful isolates of the structure. Chemical studies of the mitotic spindle have been reviewed elsewhere (Mcintosh, 1977), and will not be discussed further here. One would think that structural studies on the mitotic apparatus (MA) in situ would be straightforward, but even with this approach there is some disagreement in the results obtained with various methods and by different investigators. In this paper I will review briefly the approaches which have been used in structural studies of the MA, pointing out the strengths and problems of each approach. I will summarize the principal findings of the different methods, and identify what seem to be fruitful avenues for further work.


Author(s):  
E. A. Elfont ◽  
R. B. Tobin ◽  
D. G. Colton ◽  
M. A. Mehlman

Summary5,-5'-diphenyl-2-thiohydantoin (DPTH) is an effective inhibitor of thyroxine (T4) stimulation of α-glycerophosphate dehydrogenase in rat liver mitochondria. Because this finding indicated a possible tool for future study of the mode of action of thyroxine, the ultrastructural and biochemical effects of DPTH and/or thyroxine on rat liver mere investigated.Rats were fed either standard or DPTH (0.06%) diet for 30 days before T4 (250 ug/kg/day) was injected. Injection of T4 occurred daily for 10 days prior to sacrifice. After removal of the liver and kidneys, part of the tissue was frozen at -50°C for later biocheailcal analyses, while the rest was prefixed in buffered 3.5X glutaraldehyde (390 mOs) and post-fixed in buffered 1Z OsO4 (376 mOs). Tissues were embedded in Araldlte 502 and the sections examined in a Zeiss EM 9S.Hepatocytes from hyperthyroid rats (Fig. 2) demonstrated enlarged and more numerous mitochondria than those of controls (Fig. 1). Glycogen was almost totally absent from the cytoplasm of the T4-treated rats.


Sign in / Sign up

Export Citation Format

Share Document