Structural Studies on Mitotic Spindle Fibres

Author(s):  
J.R. Mcintosh

The mitotic apparatus is a structure of obvious biological and medical interest, but it has proved to be a difficult cellular machine to understand. The chemical composition of the spindle is only slightly elucidated, largely because of the difficulties in preparing useful isolates of the structure. Chemical studies of the mitotic spindle have been reviewed elsewhere (Mcintosh, 1977), and will not be discussed further here. One would think that structural studies on the mitotic apparatus (MA) in situ would be straightforward, but even with this approach there is some disagreement in the results obtained with various methods and by different investigators. In this paper I will review briefly the approaches which have been used in structural studies of the MA, pointing out the strengths and problems of each approach. I will summarize the principal findings of the different methods, and identify what seem to be fruitful avenues for further work.

1981 ◽  
Vol 48 (1) ◽  
pp. 241-257
Author(s):  
G.W. Zieve ◽  
J.R. NcIntosh

An anti-serum has been prepared in rabbits that precipitates high-molecular-weight bovine sperm proteins, including the dyneins. The activity of the serum against the dyneins is demonstrated by the recognition of dynein polypeptides in stained electrophoretic profiles of sperm proteins and in immunoprecipitates of radiolabelled sperm proteins. In addition, the serum stains the sperm flagella when used in indirect immunofluorescence and quantitatively inhibits the motility of demembranated sperm reactivated with ATP. However, the serum has additional anti-sperm activities besides those directed against the dyneins as demonstrated by the staining of the acrosome in indirect immunofluorescence. When used to immunoprecipitate proteins from extracts of cultured cells, the serum precipitates 2 polypeptides; one has a molecular weight higher than the flagellar dyneins, one lower. No specific staining of cultured cells is observed when an affinity-purified anti-dynein fraction IgG is used to stain a variety of cultured cells including bovine fibroblasts. We interpret these data to suggest that flagellar dynein is not a component of the mammalian mitotic spindle and discuss how this conclusion is consistent with recent genetic and structural studies on the mitotic spindle.


1980 ◽  
Vol 86 (2) ◽  
pp. 500-513 ◽  
Author(s):  
S M Wick ◽  
P K Hepler

Intracellular bound Ca++ has been localized throughout mitosis and cytokinesis in two plant species by means of in situ precipitation with potassium antimonate and electron microscope visualization. Identification of Ca++ as the major cation precipitated was made by comparing solubility properties in water, EDTA, and EGTA of the intracellular deposits with respect to those of K+-, Mg++-, and Ca++-antimonate standards. In spermatogenous cells of the water fern, Marsilea vestita, and stomatal complex cells of barley, Hordeum vulgare, antimonate deposits have been found associated with the endoplasmic reticulum (ER), vacuoles, euchromatin/nucleoplasm, and mitochondria. The last contain a much higher density of precipitates in Marsilea than in Hordeum. Dictyosomes and the nuclear envelope of Marsilea also contain antimonate deposits, as do the plasmalemma, cell wall, and phragmoplast vesicles of Hordeum. Microtubule-organizing centers such as kinetochores and the blepharoplast of Marsilea do not stain. In spite of differences in associated antimonate between certain organelles of the two species, the presence of antimonate aong the ER throughout the cell cycle is common to both. Of particular interest are those precipitates seen along the tubules and cisternae of the extensive smooth ER that surrounds and invades the mitotic spindle in both species. The ability to bind divalent cations makes the mitotic apparatus (MA)-associated ER a likely candidate for regulation of free Ca++ levels in the immediate vicinity of structural components and processes that are Ca++-sensitive and proposed to be Ca++-regulated.


Author(s):  
Kent McDonald

At the light microscope level the recent developments and interest in antibody technology have permitted the localization of certain non-microtubule proteins within the mitotic spindle, e.g., calmodulin, actin, intermediate filaments, protein kinases and various microtubule associated proteins. Also, the use of fluorescent probes like chlorotetracycline suggest the presence of membranes in the spindle. Localization of non-microtubule structures in the spindle at the EM level has been less rewarding. Some mitosis researchers, e.g., Rarer, have maintained that actin is involved in mitosis movements though the bulk of evidence argues against this interpretation. Others suggest that a microtrabecular network such as found in chromatophore granule movement might be a possible force generator but there is little evidence for or against this view. At the level of regulation of spindle function, Harris and more recently Hepler have argued for the importance of studying spindle membranes. Hepler also believes that membranes might play a structural or mechanical role in moving chromosomes.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 965
Author(s):  
Zoé Perrin ◽  
Nathalie Carrasco ◽  
Audrey Chatain ◽  
Lora Jovanovic ◽  
Ludovic Vettier ◽  
...  

Titan’s haze is strongly suspected to be an HCN-derived polymer, but despite the first in situ measurements by the ESA-Huygens space probe, its chemical composition and formation process remain largely unknown. To investigate this question, we simulated the atmospheric haze formation process, experimentally. We synthesized analogues of Titan’s haze, named Titan tholins, in an irradiated N2–CH4 gas mixture, mimicking Titan’s upper atmosphere chemistry. HCN was monitored in situ in the gas phase simultaneously with the formation and evolution of the haze particles. We show that HCN is produced as long as the particles are absent, and is then progressively consumed when the particles appear and grow. This work highlights HCN as an effective precursor of Titan’s haze and confirms the HCN-derived polymer nature of the haze.


2006 ◽  
Vol 153 (11) ◽  
pp. A2152 ◽  
Author(s):  
Kyung Yoon Chung ◽  
Won-Sub Yoon ◽  
James McBreen ◽  
Xiao-Qing Yang ◽  
Si Hyoung Oh ◽  
...  

2012 ◽  
Vol 84 (8) ◽  
pp. 1741-1748 ◽  
Author(s):  
E. Peter Kündig ◽  
Yixia Jia ◽  
Dmitry Katayev ◽  
Masafumi Nakanishi

Very high asymmetric inductions result in the Pd-catalyzed intramolecular arylation of amides to give 3,3-disubstituted oxindoles when new in situ-generated chiral N-heterocyclic carbene (NHC*) ligands are employed. Structural studies show that conformational locking to minimize allylic strain is the key to understanding the function of these ligands. New applications of these ligands in the frontier area of asymmetric coupling reactions involving C(sp3)–H bonds are detailed. Highly enantioenriched fused indolines are accessible using either preformed- or in situ-generated Pd-NHC* catalysts. Remarkably, this occurs at high temperature (140–160 °C) via excellent asymmetric recognition of an enantiotopic C–H bond in an unactivated methylene unit.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Julija Pauraite ◽  
Kristina Plauškaitė ◽  
Vadimas Dudoitis ◽  
Vidmantas Ulevicius

In situ investigation results of aerosol optical properties (absorption and scattering) and chemical composition at an urban background site in Lithuania (Vilnius) are presented. Investigation was performed in May-June 2017 using an aerosol chemical speciation monitor (ACSM), a 7-wavelength Aethalometer and a 3-wavelength integrating Nephelometer. A positive matrix factorisation (PMF) was used for the organic aerosol mass spectra analysis to characterise the sources of ambient organic aerosol (OA). Five OA factors were identified: hydrocarbon-like OA (HOA), biomass-burning OA (BBOA), more and less oxygenated OA (LVOOA and SVOOA, respectively), and local hydrocarbon-like OA (LOA). The average absorption (at 470 nm) and scattering (at 450 nm) coefficients during the entire measurement campaign were 16.59 Mm−1 (standard deviation (SD) = 17.23 Mm−1) and 29.83 Mm−1 (SD = 20.45 Mm−1), respectively. Furthermore, the absorption and scattering Angström exponents (AAE and SAE, respectively) and single-scattering albedo (SSA) were calculated. The average AAE value at 470/660 nm was 0.97 (SD = 0.16) indicating traffic-related black carbon (BCtr) dominance. The average value of SAE (at 450/700 nm) was 1.93 (SD = 0.32) and could be determined by the submicron particle (PM1) dominance versus the supermicron ones (PM > 1 µm). The average value of SSA was 0.62 (SD = 0.13). Several aerosol types showed specific segregation in the SAE versus SSA plot, which underlines different optical properties due to various chemical compositions.


Sign in / Sign up

Export Citation Format

Share Document