Regulation of ecdysteroid biosynthesis and action in the desert locust,Schistocerca gregaria

2016 ◽  
Author(s):  
Cynthia Lenaerts
2021 ◽  
Vol 22 (24) ◽  
pp. 13465
Author(s):  
Lina Verbakel ◽  
Cynthia Lenaerts ◽  
Rania Abou El Asrar ◽  
Caroline Zandecki ◽  
Evert Bruyninckx ◽  
...  

Accurate control of innate behaviors associated with developmental transitions requires functional integration of hormonal and neural signals. Insect molting is regulated by a set of neuropeptides, which trigger periodic pulses in ecdysteroid hormone titers and coordinate shedding of the old cuticle during ecdysis. In the current study, we demonstrate that crustacean cardioactive peptide (CCAP), a structurally conserved neuropeptide described to induce the ecdysis motor program, also exhibits a previously unknown prothoracicostatic activity to regulate ecdysteroid production in the desert locust, Schistocerca gregaria. We identified the locust genes encoding the CCAP precursor and three G protein-coupled receptors that are activated by CCAP with EC50 values in the (sub)nanomolar range. Spatiotemporal expression profiles of the receptors revealed expression in the prothoracic glands, the endocrine organs where ecdysteroidogenesis occurs. RNAi-mediated knockdown of CCAP precursor or receptors resulted in significantly elevated transcript levels of several Halloween genes, which encode ecdysteroid biosynthesis enzymes, and in elevated ecdysteroid levels one day prior to ecdysis. Moreover, prothoracic gland explants exhibited decreased secretion of ecdysteroids in the presence of CCAP. Our results unequivocally identify CCAP as the first prothoracicostatic peptide discovered in a hemimetabolan species and reveal the existence of an intricate interplay between CCAP signaling and ecdysteroidogenesis.


1970 ◽  
Vol 102 (9) ◽  
pp. 1163-1168 ◽  
Author(s):  
W. D. Seabrook

AbstractSchistocerca gregaria possess four neurones of giant fibre proportions within the abdominal ventral nerve cord. These fibres arise from single cell bodies in the terminal ganglionic mass and pass without interruption to the metathoracic ganglion. Fibres become reduced in diameter when passing through a ganglion. Branching of the giant fibres occurs in abdominal ganglia 6 and 7.


1998 ◽  
Author(s):  
Alan R. McCaffery ◽  
Stephen J. Simpson ◽  
M. Saiful Islam ◽  
Peter Roessingh

1999 ◽  
Vol 202 (16) ◽  
pp. 2151-2159 ◽  
Author(s):  
T. Friedel

Substratum vibrations elicit a fast startle response in unrestrained quiescent desert locusts (Schistocerca gregaria). The response is graded with stimulus intensity and consists of a small, rapid but conspicuous movement of the legs and body, but it does not result in any positional change of the animal. With stimuli just above threshold, it begins with a fast twitch of the hindlegs generated by movements of the coxa-trochanter and femur-tibia joints. With increasing stimulus intensity, a rapid movement of all legs may follow, resulting in an up-down movement of the whole body. The magnitude of both the hindleg movement and electromyographic recordings from hindleg extensor and flexor tibiae muscles increases with stimulus amplitude and reaches a plateau at vibration accelerations above 20 m s(−)(2) (peak-to-peak). Hindleg extensor and flexor tibiae muscles in unrestrained animals are co-activated with a mean latency of 30 ms. Behavioural thresholds are as low as 0. 47 m s(−)(2) (peak-to-peak) at frequencies below 100 Hz but rise steeply above 200 Hz. The response habituates rapidly, and inter-stimulus intervals of 2 min or more are necessary to evoke maximal reactions. Intracellular recordings in fixed (upside-down) locusts also revealed co-activation of both flexor and extensor motor neurones with latencies of approximately 25 ms. This shows that the neuronal network underlying the startle movement is functional in a restrained preparation and can therefore be studied in great detail at the level of identified neurones.


Sign in / Sign up

Export Citation Format

Share Document