ionotropic receptors
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 27)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Subash Dhakal ◽  
Jiun Sang ◽  
Binod Aryal ◽  
Youngseok Lee

AbstractAmmonia and its amine-containing derivatives are widely found in natural decomposition byproducts. Here, we conducted biased chemoreceptor screening to investigate the mechanisms by which different concentrations of ammonium salt, urea, and putrescine in rotten fruits affect feeding and oviposition behavior. We identified three ionotropic receptors, including the two broadly required IR25a and IR76b receptors, as well as the narrowly tuned IR51b receptor. These three IRs were fundamental in eliciting avoidance against nitrogenous waste products, which is mediated by bitter-sensing gustatory receptor neurons (GRNs). The aversion of nitrogenous wastes was evaluated by the cellular requirement by expressing Kir2.1 and behavioral recoveries of the mutants in bitter-sensing GRNs. Furthermore, by conducting electrophysiology assays, we confirmed that ammonia compounds are aversive in taste as they directly activated bitter-sensing GRNs. Therefore, our findings provide insights into the ecological roles of IRs as a means to detect and avoid toxic nitrogenous waste products in nature.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1467
Author(s):  
Noushin Ahmadpour ◽  
Meher Kantroo ◽  
Jillian L. Stobart

Astrocytes are complex glial cells that play many essential roles in the brain, including the fine-tuning of synaptic activity and blood flow. These roles are linked to fluctuations in intracellular Ca2+ within astrocytes. Recent advances in imaging techniques have identified localized Ca2+ transients within the fine processes of the astrocytic structure, which we term microdomain Ca2+ events. These Ca2+ transients are very diverse and occur under different conditions, including in the presence or absence of surrounding circuit activity. This complexity suggests that different signalling mechanisms mediate microdomain events which may then encode specific astrocyte functions from the modulation of synapses up to brain circuits and behaviour. Several recent studies have shown that a subset of astrocyte microdomain Ca2+ events occur rapidly following local neuronal circuit activity. In this review, we consider the physiological relevance of microdomain astrocyte Ca2+ signalling within brain circuits and outline possible pathways of extracellular Ca2+ influx through ionotropic receptors and other Ca2+ ion channels, which may contribute to astrocyte microdomain events with potentially fast dynamics.


2021 ◽  
pp. 1-23
Author(s):  
Roman Vuillaume ◽  
Jhunlyn Lorenzo ◽  
Stéphane Binczak ◽  
Sabir Jacquir

Abstract Postsynaptic ionotropic receptors critically shape synaptic currents and underpin their activity-dependent plasticity. In recent years, regulation of expression of these receptors by slow inward and outward currents mediated by gliotransmitter release from astrocytes has come under scrutiny as a potentially important mechanism for the regulation of synaptic information transfer. In this study, we consider a model of astrocyte-regulated synapses to investigate this hypothesis at the level of layered networks of interacting neurons and astrocytes. Our simulations hint that gliotransmission sustains the transfer function across layers, although it decorrelates the neuronal activity from the signal pattern. Overall, our results make clear how astrocytes could transform neuronal activity by inducing a lowfrequency modulation of postsynaptic activity.


Neuroscience ◽  
2021 ◽  
Vol 461 ◽  
pp. 180-193
Author(s):  
V. Rodriguez-Chavez ◽  
J. Moran ◽  
G. Molina-Salinas ◽  
W.A. Zepeda Ruiz ◽  
M.C. Rodriguez ◽  
...  
Keyword(s):  

Author(s):  
Rafael Franco ◽  
Rafael Rivas-Santisteban ◽  
Jaume Lillo ◽  
Jordi Camps ◽  
Gemma Navarro ◽  
...  

5-hydroxytryptamine (5-HT) is derived from the essential amino acid L-tryptophan. Although the compound has been studied extensively for its neuronal handling and synaptic actions, serotonin 5-HT receptors can be found extra-synaptically and not only in neurons but in many types of mammalian cells, inside and outside the central nervous system (CNS). In sharp contrast, glutamate (Glu) and ATP are better known as metabolism-related molecules, but they also are neurotransmitters, and their receptors are expressed on almost any type of cell inside and outside the nervous system. Whereas 5-hydroxytryptamine and Glu are key regulators of the immune system, ATP actions are more general. 5-hydroxytryptamine, ATP and Glu act through both G protein-coupled receptors (GPCRs), and ionotropic receptors, i.e., ligand gated ion channels. These are the three examples of neurotransmitters whose actions as holistic regulatory molecules are briefly put into perspective here.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 571
Author(s):  
Sven Kuspiel ◽  
Dominik Wiemuth ◽  
Stefan Gründer

Acid-sensing ion channels (ASICs) are ionotropic receptors that are directly activated by protons. Although protons have been shown to act as a neurotransmitter and to activate ASICs during synaptic transmission, it remains a possibility that other ligands directly activate ASICs as well. Neuropeptides are attractive candidates for alternative agonists of ASICs, because related ionotropic receptors are directly activated by neuropeptides and because diverse neuropeptides modulate ASICs. Recently, it has been reported that the neuropeptide nocistatin directly activates ASICs, including ASIC1a. Here we show that nocistatin does not directly activate ASIC1a expressed in Xenopus oocytes or CHO cells. Moreover, we show that nocistatin acidifies the bath solution to an extent that can fully explain the previously reported activation by this highly acidic peptide. In summary, we conclude that nocistatin only indirectly activates ASIC1a via acidification of the bath solution.


2021 ◽  
Author(s):  
SeulAh Kim ◽  
Michael Wallace ◽  
Mahmoud El-Rifai ◽  
Alexa Knudsen ◽  
Bernardo Sabatini

Many mammalian neurons release multiple neurotransmitters to activate diverse classes of ionotropic receptors on their postsynaptic targets. Entopeduncular nucleus somatostatin (EP Sst+) neurons that project to the lateral habenula (LHb) release both glutamate and GABA, but it is unclear if these are packaged into the same or segregated pools of synaptic vesicles. Here we describe a novel method combining electrophysiology, spatially-patterned optogenetics, and computational modeling designed to analyze the mechanism of glutamate/GABA corelease. We find that the properties of PSCs elicited in LHb neurons by optogenetic activation of EP Sst+ terminals are only consistent with co-packaging of glutamate and GABA into individual vesicles. Furthermore, serotonin, which acts presynaptically to weaken EP Sst+ to LHb synapses, does so by altering the release probability of vesicles containing both transmitters. Our approach is broadly applicable to the study of multi-transmitter neurons throughout the brain and our results constrain mechanisms of neuromodulation in LHb.


Author(s):  
Xiang Zhou ◽  
Jixing Guo ◽  
Mingxia Zhang ◽  
Chunxiu Bai ◽  
Zheng Wang ◽  
...  

Abstract Crematogaster rogenhoferi (Hymenoptera: Formicidae), an omnivorous ant, is one of the dominant predatory natural enemies of a soft scale pest, Parasaissetia nigra Nietner (Homoptera: Coccidae), and can effectively control P. nigra populations in rubber forests. Olfaction plays a vital role in the process of predation. However, the information about the molecular mechanism of olfaction-evoked behaviour in C. rogenhoferi is limited. In this study, we conducted antennal transcriptome analysis to identify candidate olfactory genes. We obtained 53,892 unigenes, 16,185 of which were annotated. Based on annotations, we identified 49 unigenes related to chemoreception, including four odourant-binding proteins, three chemosensory proteins, 37 odourant receptors, two odourant ionotropic receptors and three sensory neuron membrane proteins. This is the first report on the molecular basis of the chemosensory system of C. rogenhoferi. The findings provide a basis for elucidating the molecular mechanisms of the olfactory-related behaviours of C. rogenhoferi, which would facilitate a better application of C. rogenhoferi as a biological control agent.


2021 ◽  
Author(s):  
Xiao-Qing Hou ◽  
Dan-Dan Zhang ◽  
Daniel Powell ◽  
Hong-Lei Wang ◽  
Martin N. Andersson ◽  
...  

In insects, airborne chemical signals are mainly detected by two receptor families, odorant receptors (ORs) and ionotropic receptors (IRs). Functions of ORs have been intensively investigated in Diptera and Lepidoptera, while the functions and evolution of the more ancient IR family remain largely unexplored beyond Diptera. Here, we identified a repertoire of 26 IRs from transcriptomes of female and male antennae, and ovipositors in the moth Agrotis segetum. We observed that a large clade formed by IR75p and IR75q expansions is closely related to the acid-sensing IRs identified in Diptera. We functionally assayed each of the five AsegIRs from this clade using Xenopus oocytes and found that two receptors responded to the tested ligands. AsegIR75p.1 responded to several compounds but hexanoic acid was revealed to be the primary ligand, and AsegIR75q.2 responded primarily to octanoic acid, and less so to nonanoic acid. It has been reported that the C6-C10 medium-chain fatty acids repel various insects including many drosophilids and mosquitos. Our GC-EAD recordings showed that C6-C10 medium-chain fatty acids elicited antennal responses of both sexes of A. segetum, while only octanoic acid had repellent effect to the moths in a behavioural assay. In addition, using fluorescence in situ hybridization, we demonstrated that AsegIR75q.2 and its co-receptor AsegIR8a are not located in coeloconic sensilla as found in Drosophila, but in basiconic or trichoid sensilla. These functional data in combination with our phylogenetic analysis suggest that subfunctionalization of the acid-sensing IRs after gene duplication plays an important role in the evolution of ligand specificities of the acid-sensing IRs in Lepidoptera.


Sign in / Sign up

Export Citation Format

Share Document