scholarly journals CAPNet: Continuous Approximation Projection for 3D Point Cloud Reconstruction Using 2D Supervision

Author(s):  
K. L. Navaneet ◽  
Priyanka Mandikal ◽  
Mayank Agarwal ◽  
R. Venkatesh Babu

Knowledge of 3D properties of objects is a necessity in order to build effective computer vision systems. However, lack of large scale 3D datasets can be a major constraint for datadriven approaches in learning such properties. We consider the task of single image 3D point cloud reconstruction, and aim to utilize multiple foreground masks as our supervisory data to alleviate the need for large scale 3D datasets. A novel differentiable projection module, called ‘CAPNet’, is introduced to obtain such 2D masks from a predicted 3D point cloud. The key idea is to model the projections as a continuous approximation of the points in the point cloud. To overcome the challenges of sparse projection maps, we propose a loss formulation termed ‘affinity loss’ to generate outlierfree reconstructions. We significantly outperform the existing projection based approaches on a large-scale synthetic dataset. We show the utility and generalizability of such a 2D supervised approach through experiments on a real-world dataset, where lack of 3D data can be a serious concern. To further enhance the reconstructions, we also propose a test stage optimization procedure to obtain reconstructions that display high correspondence with the observed input image.

2021 ◽  
Author(s):  
Dongyi Yao ◽  
Fengqi Li ◽  
Yi Wang ◽  
Hong Yang ◽  
Xiuyun Li

Author(s):  
S. A. M. Ariff ◽  
S. Azri ◽  
U. Ujang ◽  
A. A. M. Nasir ◽  
N. Ahmad Fuad ◽  
...  

Abstract. The current trends of 3D scanning technologies allow us to acquire accurate 3D data of large-scale environment efficiently. The 3D data of large-scale environments is essential when generating 3D model is for the visualization of smart cities. For the seamless visualization of 3D model, large data size will be used during the 3D data acquisition. However, the processing time for large data size is time consuming and requires suitable hardware specification. In this study, different hardware capability in processing large data of 3D point cloud for mesh generation is investigated. Light Detection and Ranging (LiDAR) Airborne and Mobile Mapping System (MMS) are used as data input and processed using Bentley ContextCapture software. The study is conducted in Malaysia, specifically in Wilayah Persekutuan Kuala Lumpur and Selangor with the size of 49 km2. Several analyses have been performed to analyse the software and hardware specification based on the 3D mesh model generated. From the finding, we have suggested the most suitable hardware specification for 3D mesh model generation.


2020 ◽  
Vol 12 (16) ◽  
pp. 2598
Author(s):  
Simone Teruggi ◽  
Eleonora Grilli ◽  
Michele Russo ◽  
Francesco Fassi ◽  
Fabio Remondino

The recent years saw an extensive use of 3D point cloud data for heritage documentation, valorisation and visualisation. Although rich in metric quality, these 3D data lack structured information such as semantics and hierarchy between parts. In this context, the introduction of point cloud classification methods can play an essential role for better data usage, model definition, analysis and conservation. The paper aims to extend a machine learning (ML) classification method with a multi-level and multi-resolution (MLMR) approach. The proposed MLMR approach improves the learning process and optimises 3D classification results through a hierarchical concept. The MLMR procedure is tested and evaluated on two large-scale and complex datasets: the Pomposa Abbey (Italy) and the Milan Cathedral (Italy). Classification results show the reliability and replicability of the developed method, allowing the identification of the necessary architectural classes at each geometric resolution.


Sign in / Sign up

Export Citation Format

Share Document