scholarly journals EEMEFN: Low-Light Image Enhancement via Edge-Enhanced Multi-Exposure Fusion Network

2020 ◽  
Vol 34 (07) ◽  
pp. 13106-13113 ◽  
Author(s):  
Minfeng Zhu ◽  
Pingbo Pan ◽  
Wei Chen ◽  
Yi Yang

This work focuses on the extremely low-light image enhancement, which aims to improve image brightness and reveal hidden information in darken areas. Recently, image enhancement approaches have yielded impressive progress. However, existing methods still suffer from three main problems: (1) low-light images usually are high-contrast. Existing methods may fail to recover images details in extremely dark or bright areas; (2) current methods cannot precisely correct the color of low-light images; (3) when the object edges are unclear, the pixel-wise loss may treat pixels of different objects equally and produce blurry images. In this paper, we propose a two-stage method called Edge-Enhanced Multi-Exposure Fusion Network (EEMEFN) to enhance extremely low-light images. In the first stage, we employ a multi-exposure fusion module to address the high contrast and color bias issues. We synthesize a set of images with different exposure time from a single image and construct an accurate normal-light image by combining well-exposed areas under different illumination conditions. Thus, it can produce realistic initial images with correct color from extremely noisy and low-light images. Secondly, we introduce an edge enhancement module to refine the initial images with the help of the edge information. Therefore, our method can reconstruct high-quality images with sharp edges when minimizing the pixel-wise loss. Experiments on the See-in-the-Dark dataset indicate that our EEMEFN approach achieves state-of-the-art performance.

2021 ◽  
Vol 15 ◽  
Author(s):  
Jingsi Zhang ◽  
Chengdong Wu ◽  
Xiaosheng Yu ◽  
Xiaoliang Lei

With the development of computer vision, high quality images with rich information have great research potential in both daily life and scientific research. However, due to different lighting conditions, surrounding noise and other reasons, the image quality is different, which seriously affects people's discrimination of the information in the image, thus causing unnecessary conflicts and results. Especially in the dark, the images captured by the camera are difficult to identify, and the smart system relies heavily on high-quality input images. The image collected in low-light environment has the characteristic with high noise and color distortion, which makes it difficult to utilize the image and can not fully explore the rich value information of the image. In order to improve the quality of low-light image, this paper proposes a Heterogenous low-light image enhancement method based on DenseNet generative adversarial network. Firstly, the generative network of generative adversarial network is realized by using DenseNet framework. Secondly, the feature map from low light image to normal light image is learned by using the generative adversarial network. Thirdly, the enhancement of low-light image is realized. The experimental results show that, in terms of PSNR, SSIM, NIQE, UQI, NQE and PIQE indexes, compared with the state-of-the-art enhancement algorithms, the values are ideal, the proposed method can improve the image brightness more effectively and reduce the noise of enhanced image.


2021 ◽  
Author(s):  
Zhuqing Jiang ◽  
Haotian Li ◽  
Liangjie Liu ◽  
Aidong Men ◽  
Haiying Wang

2021 ◽  
Vol 11 (11) ◽  
pp. 5055
Author(s):  
Hong Liang ◽  
Ankang Yu ◽  
Mingwen Shao ◽  
Yuru Tian

Due to the characteristics of low signal-to-noise ratio and low contrast, low-light images will have problems such as color distortion, low visibility, and accompanying noise, which will cause the accuracy of the target detection problem to drop or even miss the detection target. However, recalibrating the dataset for this type of image will face problems such as increased cost or reduced model robustness. To solve this kind of problem, we propose a low-light image enhancement model based on deep learning. In this paper, the feature extraction is guided by the illumination map and noise map, and then the neural network is trained to predict the local affine model coefficients in the bilateral space. Through these methods, our network can effectively denoise and enhance images. We have conducted extensive experiments on the LOL datasets, and the results show that, compared with traditional image enhancement algorithms, the model is superior to traditional methods in image quality and speed.


Sign in / Sign up

Export Citation Format

Share Document