Quantitative Assessment of Articular Cartilage Using High-Frequency Ultrasound: Research Findings and Diagnostic Prospects

2009 ◽  
Vol 37 (6) ◽  
pp. 461-494 ◽  
Author(s):  
Heikki J. Nieminen ◽  
Y. P. Zheng ◽  
S. Saarakkala ◽  
Q. Wang ◽  
J. Toyras ◽  
...  
2014 ◽  
Vol 40 (1) ◽  
pp. 244-257 ◽  
Author(s):  
Nils Männicke ◽  
Martin Schöne ◽  
Matthias Gottwald ◽  
Felix Göbel ◽  
Michael L. Oelze ◽  
...  

2009 ◽  
Vol 3 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Yan-Ping Huang ◽  
Yong-Ping Zheng

Conventional ultrasound examination of the articular cartilage performed externally on the body surface around the joint has limited accuracy due to the inadequacy in frequency used. In contrast to this, minimally invasive arthroscopy-based ultrasound with adequately high frequency may be a better alternative to assess the cartilage. Up to date, no special ultrasound transducer for imaging the cartilage in arthroscopic use has been designed. In this study, we introduced the intravascular ultrasound (IVUS) for this purpose. An IVUS system with a catheter-based probe (Ø ≈ 1mm) was used to measure the thickness and surface acoustical reflection of the bovine patellar articular cartilage in vitro before and after degeneration induced by enzyme treatments. Similar measurement was performed using another high frequency ultrasound system (Vevo) with a probe of much larger size and the results were compared between the two systems. The thickness measured using IVUS was highly correlated (r = 0.985, p < 0.001) with that obtained by Vevo. Thickness and surface reflection amplitude measured using IVUS on the enzymatically digested articular cartilage showed changes similar to those obtained by Vevo, which were expectedly consistent with previous investigations. IVUS can be potentially used for the quantitative assessment of articular cartilage, with its ready-to-use arthroscopic feature.


2006 ◽  
Vol 129 (3) ◽  
pp. 413-422 ◽  
Author(s):  
Q. Wang ◽  
Y. P. Zheng ◽  
H. J. Niu ◽  
A. F. T. Mak

Articular cartilage is a biological weight-bearing tissue covering the bony ends of articulating joints. Negatively charged proteoglycan (PG) in articular cartilage is one of the main factors that govern its compressive mechanical behavior and swelling phenomenon. PG is nonuniformly distributed throughout the depth direction, and its amount or distribution may change in the degenerated articular cartilage such as osteoarthritis. In this paper, we used a 50MHz ultrasound system to study the depth-dependent strain of articular cartilage under the osmotic loading induced by the decrease of the bathing saline concentration. The swelling-induced strains under the osmotic loading were used to determine the layered material properties of articular cartilage based on a triphasic model of the free-swelling. Fourteen cylindrical cartilage-bone samples prepared from fresh normal bovine patellae were tested in situ in this study. A layered triphasic model was proposed to describe the depth distribution of the swelling strain for the cartilage and to determine its aggregate modulus Ha at two different layers, within which Ha was assumed to be linearly dependent on the depth. The results showed that Ha was 3.0±3.2, 7.0±7.4, 24.5±11.1MPa at the cartilage surface, layer interface, and deep region, respectively. They are significantly different (p<0.01). The layer interface located at 70%±20% of the overall thickness from the uncalcified-calcified cartilage interface. Parametric analysis demonstrated that the depth-dependent distribution of the water fraction had a significant effect on the modeling results but not the fixed charge density. This study showed that high-frequency ultrasound measurement together with triphasic modeling is practical for quantifying the layered mechanical properties of articular cartilage nondestructively and has the potential for providing useful information for the detection of the early signs of osteoarthritis.


2002 ◽  
Vol 10 (7) ◽  
pp. 535-541 ◽  
Author(s):  
B. Pellaumail ◽  
A. Watrin ◽  
D. Loeuille ◽  
P. Netter ◽  
G. Berger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document