SLIP-FLOW HEAT TRANSFER IN A SEMI-INFINITE TUBE CONSIDERING THE EFFECT OF AXIAL CONDUCTION AND VISCOUS DISSIPATION

2018 ◽  
Author(s):  
Debashis Panda ◽  
Ashok Kumar Satapathy
Author(s):  
Metin B. Turgay ◽  
Almila G. Yazicioglu ◽  
Sadik Kakac

Effects of surface roughness, axial conduction, viscous dissipation, and rarefaction on heat transfer in a two–dimensional parallel plate microchannel with constant wall temperature are investigated numerically. Roughness is simulated by adding equilateral triangular obstructions with various heights on one of the plates. Air, with constant thermophysical properties, is chosen as the working fluid, and laminar, single-phase, developing flow in the slip flow regime at steady state is analyzed. Governing equations are solved by finite element method with tangential slip velocity and temperature jump boundary conditions to observe the rarefaction effect in the microchannel. Viscous dissipation effect is analyzed by changing the Brinkman number, and the axial conduction effect is analyzed by neglecting and including the corresponding term in the energy equation separately. Then, the effect of surface roughness on the Nusselt number is observed by comparing with the corresponding smooth channel results. It is found that Nusselt number decreases in the continuum case with the presence of surface roughness, while it increases with increasing roughness height in the slip flow regime, which is also more pronounced at low-rarefied flows (i.e., around Kn = 0.02). Moreover, the presence of axial conduction and viscous dissipation has increasing effects on heat transfer with increasing roughness height. Even in low velocity flows, roughness increases Nusselt number up to 33% when viscous dissipation is considered.


Author(s):  
Jennifer van Rij ◽  
Tim Ameel ◽  
Todd Harman

Microchannel convective heat transfer characteristics in the slip flow regime are numerically evaluated for two-dimensional, steady state, laminar, constant wall heat flux and constant wall temperature flows. The effects of Knudsen number, accommodation coefficients, viscous dissipation, pressure work, second-order slip boundary conditions, axial conduction, and thermally/hydrodynamically developing flow are considered. The effects of these parameters on microchannel convective heat transfer are compared through the Nusselt number. Numerical values for the Nusselt number are obtained using a continuum based three-dimensional, unsteady, compressible computational fluid dynamics algorithm that has been modified with slip boundary conditions. Numerical results are verified using analytic solutions for thermally and hydrodynamically fully developed flows. The resulting analytical and numerical Nusselt numbers are given as a function of Knudsen number, the first- and second-order velocity slip and temperature jump coefficients, the Peclet number, and the Brinkman number. Excellent agreement between numerical and analytical data is demonstrated. Viscous dissipation, pressure work, second-order slip terms, and axial conduction are all shown to have significant effects on Nusselt numbers in the slip flow regime.


Sign in / Sign up

Export Citation Format

Share Document