HEAT TRANSFER TO MULTIPHASE FLOW IN COILED PIPES

Author(s):  
V. G. Kubair
Fuel ◽  
2021 ◽  
Vol 306 ◽  
pp. 121655
Author(s):  
Xuewen Cao ◽  
Kairan Yang ◽  
Hongchao Wang ◽  
Jiang Bian

2021 ◽  
Author(s):  
Ronald E. Vieira ◽  
Thiana A. Sedrez ◽  
Siamack A. Shirazi ◽  
Gabriel Silva

Abstract Air-water two-phase flow in circular pipes has been studied by many investigators. However, investigations of multiphase flow in non-circular pipes are still very rare. Triangular pipes have found a number of applications, such as multiphase flow conditioning, erosion mitigation in elbows, compact heat exchanges, solar heat collectors, and electronic cooling systems. This work presents a survey of air-water and air-water-sand flow through circular and triangular pipes. The main objective of this investigation is to study the potential effects of triangular pipe geometry on flow patterns, slug frequency, sand erosion in elbows, and heat transfer in multiphase flow. Firstly, twenty-three experiments were performed for horizontal air-water flow. Detailed videos and slug frequency measurements were collected through circular and triangular clear pipes to identify flow patterns and create a database for these pipe configurations. The effect of corners of the triangular pipe on the liquid distribution was investigated using two different orientations of triangular pipe: apex upward and downward and results of triangular pipes were compared to round tubes. Secondly, ultrasonic wall thickness erosion measurements, paint removal studies, and CFD simulations were carried out to investigate the erosion patterns and magnitudes for liquid-sand and liquid-gas-sand flows in circular and triangular elbows with the same radius of curvature and cross-sectional area. Thirdly, heat transfer rates for liquid flows were also simulated for both circular and triangular pipe cross-sections. Although similar flow patterns are observed in circular and triangular pipe configurations, the orientation of the triangular pipes seems to have an effect on the liquid distribution and slug frequency. For higher liquid rates, slug frequencies are consistently lower in the triangular pipe as compared to the circular pipe. Similarly, the triangular elbow offers better flow behavior as compared to circular elbows when investigated numerically with similar flow rates for erosion patterns for both liquid-sand flow and liquid-gas-sand flows. Experimental and CFD results show that erosion in the circular elbow is about three times larger than in the triangular elbow. Paint studies results validated erosion patterns and their relations with particle impacts. Finally, heat transfer to/from triangular pipes is shown to be more efficient than in circular pipes, making them attractive for compact heat exchangers and heat collectors. This paper represents a novel experimental work and CFD simulations to examine the effects of pipe geometries on multiphase flow in pipes with several practical applications. The present results will help to determine the efficiency of utilizing triangular pipes as compared to circular pipes for several important applications and field operations such as reducing slug frequencies of multiphase flow in pipes, and reducing solid particle erosion of elbows, and also increasing the efficiency of heat exchangers.


Author(s):  
Mubbashar Nazeer ◽  
Farooq Hussain ◽  
Laiba Shabbir ◽  
Adila Saleem ◽  
M. Ijaz Khan ◽  
...  

In this paper, the two-phase flow of non-Newtonian fluid is investigated. The main source of the flow is metachronal waves which are caused by the back and forth motion of cilia attached to the opposite walls of the channel. Magnetohydrodynamics (MHD) of Casson fluid experience the effects of transverse magnetic fields incorporated with the slippery walls of the channel. Thermal effects are examined by taking Roseland’s approximation and application of thermal radiation into account. The heat transfer through the multiphase flow of non-Newtonian fluid is further, compared with Newtonian bi-phase flow. Since the main objective of the current study is to analyze heat transfer through an MHD multiphase flow of Casson fluid. The two-phase heated flow of non-Newtonian fluid is driven by cilia motion results in nonlinear and coupled differential equations which are transformed and subsequently, integrated subject to slip boundary conditions. A closed-form solution is eventually obtained form that effectively describes the flow dynamics of multiphase flow. A comprehensive parametric study is carried out which highlights the significant contribution of pertinent parameters of the heat transfer of Casson multiphase flow. It is inferred that lubricated walls and magnetic fields hamper the movement of multiphase flow. It is noted that a sufficient amount of additional thermal energy moves into the system, due to the Eckert number and Prandtl number. While thermal radiation acts differently by expunging the heat transfer. Moreover, Casson multiphase flow is a more suitable source of heat transfer than Newtonian multiphase flow.


Sign in / Sign up

Export Citation Format

Share Document