Area 11: Commercial Applications of Energetic Materials

Author(s):  
M. S. Bischel ◽  
J. M. Schultz

Despite its rapidly growing use in commercial applications, the morphology of LLDPE and its blends has not been thoroughly studied by microscopy techniques. As part of a study to examine the morphology of a LLDPE narrow fraction and its blends with HDPE via SEM, TEM and AFM, an appropriate etchant is required. However, no satisfactory recipes could be found in the literature. Mirabella used n-heptane, a solvent for LLDPE, as an etchant to reveal certain morphological features in the SEM, including faint banding in spherulites. A 1992 paper by Bassett included a TEM micrograph of an axialite of LLDPE, etched in a potassium permanganate solution, but no details were given.Attempts to use n-heptane, at 60°C, as an etchant were unsuccessful: depending upon thickness, samples swelled and increased in diameter by 5-10% or more within 15 minutes. Attempts to use the standard 3.5% potassium permanganate solution for HDPE were also unsuccessful: the LLDPE was severely overetched. Weaker solutions were also too severe.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (9) ◽  
pp. 565-576 ◽  
Author(s):  
YUCHENG PENG ◽  
DOUGLAS J. GARDNER

Understanding the surface properties of cellulose materials is important for proper commercial applications. The effect of particle size, particle morphology, and hydroxyl number on the surface energy of three microcrystalline cellulose (MCC) preparations and one nanofibrillated cellulose (NFC) preparation were investigated using inverse gas chromatography at column temperatures ranging from 30ºC to 60ºC. The mean particle sizes for the three MCC samples and the NFC sample were 120.1, 62.3, 13.9, and 9.3 μm. The corresponding dispersion components of surface energy at 30°C were 55.7 ± 0.1, 59.7 ± 1.3, 71.7 ± 1.0, and 57.4 ± 0.3 mJ/m2. MCC samples are agglomerates of small individual cellulose particles. The different particle sizes and morphologies of the three MCC samples resulted in various hydroxyl numbers, which in turn affected their dispersion component of surface energy. Cellulose samples exhibiting a higher hydroxyl number have a higher dispersion component of surface energy. The dispersion component of surface energy of all the cellulose samples decreased linearly with increasing temperature. MCC samples with larger agglomerates had a lower temperature coefficient of dispersion component of surface energy.


Author(s):  
D. W. Hoffmans ◽  
A. P. M. Leenders ◽  
P. A. O. G. Korting ◽  
G. M. H. J. L. Gadiot

Author(s):  
Denis Spitzer ◽  
Vincent Pichot ◽  
Jean-Edouard Berthe ◽  
Florent Pessina ◽  
Tanja Deckert-Gaudig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document