nanofibrillated cellulose
Recently Published Documents


TOTAL DOCUMENTS

588
(FIVE YEARS 218)

H-INDEX

59
(FIVE YEARS 14)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 327
Author(s):  
Wiphada Mitbumrung ◽  
Numphung Rungraung ◽  
Niramol Muangpracha ◽  
Ploypailin Akanitkul ◽  
Thunnalin Winuprasith

The pretreatment process is an essential step for nanofibrillated cellulose production as it enhances size reduction efficiency, reduces production cost, and decreases energy consumption. In this study, nanofibrillated cellulose (NFC) was prepared using various pretreatment processes, either chemical (i.e., acid, basic, and bleach) or hydrothermal (i.e., microwave and autoclave), followed by disintegration using high pressure homogenization from oat bran fibers. The obtained NFC were used as an emulsifier to prepare 10% oil-in-water emulsions. The emulsion containing chemically pretreated NFC exhibited the smallest oil droplet diameter (d32) at 3.76 μm, while those containing NFC using other pretreatments exhibited d32 values > 5 μm. The colors of the emulsions were mainly influenced by oil droplet size rather than the color of the fiber itself. Both NFC suspensions and NFC emulsions showed a storage modulus (G′) higher than the loss modulus (G″) without crossing over, indicating gel-like behavior. For emulsion stability, microwave pretreatment effectively minimized gravitational separation, and the creaming indices of all NFC-emulsions were lower than 6% for the entire storage period. In conclusion, chemical pretreatment was an effective method for nanofiber extraction with good emulsion capacity. However, the microwave with bleaching pretreatment was an alternative method for extracting nanofibers and needs further study to improve the efficiency.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 221
Author(s):  
Olesja Starkova ◽  
Oskars Platnieks ◽  
Alisa Sabalina ◽  
Sergejs Gaidukovs

Nanofibrillated cellulose (NFC) is a sustainable functional nanomaterial known for its high strength, stiffness, and biocompatibility. It has become a key building block for the next-generation of lightweight, advanced materials for applications such as consumer products, biomedical, energy storage, coatings, construction, and automotive. Tunable and predictable durability under environmental impact is required for high performance applications. Bio-based poly (butylene succinate) (PBS) composites containing up to 50% NFC content were designed and aged in distilled water or at high relative humidity (RH98%). PBS/NFC composites are characterized by up to 10-fold increased water absorption capacity and diffusivity and the data are correlated with model calculations. Aged samples exhibited decreased crystallinity and melting temperature. Incorporation of NFC into PBS showed up to a 2.6-fold enhancement of the elastic modulus, although accompanied by a loss of strength by 40% and 8-fold reduction in the strain at failure of maximally loaded composites. Hydrothermal ageing had almost no influence on the tensile characteristics of PBS; however, there were considerable degradation effects in PBS/NFC composites. Altered reinforcement efficiency is manifested through a 3.7-fold decreased effective elastic moduli of NFC determined by applying the Halpin–Tsai model and a proportional reduction of the storage moduli of composites. The adhesion efficiency in composites was reduced by hydrothermal ageing, as measured Puckanszky’s adhesion parameter for the strength, which decreased from 3 to 0.8. For the loss factor, Kubat’s adhesion parameter was increased by an order. PBS filled with 20 wt.% NFC is identified as the most efficient composition, for which negative environmental degradation effects are counterbalanced with the positive reinforcement effect. The PBS matrix can be used to protect the NFC network from water.


2022 ◽  
Author(s):  
Nuttinee Tangsrianugul ◽  
Thunnalin Winuprasith ◽  
Manop Suphantharika ◽  
Jirarut Wongkongkatep

In this study, effect of hydrocolloids with different electrostatic characteristics, i.e. negatively charged xanthan gum (XG), positively charged chitosan (CH), and non-ionic guar gum (GG) on physicochemical properties, stability, and...


2022 ◽  
Vol 10 (2) ◽  
pp. 263-271
Author(s):  
Saad Nader ◽  
Felipe Guzman ◽  
Raphael Becar ◽  
C閟ar Segovia ◽  
Cecilia Fuentealba ◽  
...  

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 31
Author(s):  
Shihan Weng ◽  
Sara Sáez-Orviz ◽  
Ismael Marcet ◽  
Manuel Rendueles ◽  
Mario Díaz

Proteins, such as those in blood from slaughterhouses, are a good option for developing edible films. However, films made exclusively from proteins have low strength and high water solubility, which makes them difficult to use in the food industry. The use of cellulosic material, such as nanofibrillated cellulose (NFC), can improve the properties of these films. In the present work, bovine plasma was acidified and treated with ethanol to precipitate its proteins, and these proteins were used to prepare films reinforced with several concentrations of NFC. In addition, control films prepared with untreated bovine plasma and reinforced with NFC were prepared as well. These new edible films were characterized according to their mechanical properties, water vapor permeability, light transmittance, and microstructure. Furthermore, the film with the best properties was selected to be additivated with nisin to test its antimicrobial properties by wrapping meat previously contaminated with Staphylococcus aureus. In this sense, films prepared with the extracted proteins showed better properties than the films prepared with untreated plasma. In addition, the results showed that the reinforcement of the films with a 10% (w/w) of NFC decreased their water solubility and improved their puncture strength and water vapor barrier properties. Finally, the addition of nisin to the films prepared with extracted protein from bovine plasma and NFC gave them antimicrobial properties against S. aureus.


2021 ◽  
Author(s):  
Meng Ma ◽  
Qindan Chu ◽  
Hao Lin ◽  
Lin Xu ◽  
Huiwen He ◽  
...  

Abstract Abstract: Nanofibrillated cellulose (NFC) film has received tremendous attention due to its excellent electrical insulation, which shows great application prospects in the field of electronic devices. However, the low efficient heat dissipation of NFC film largely limits its use in advanced applications. In this work, the rGO hybrid fillers loaded alumina (Al2O3) particles with different sizes were synthesized by different drying methods and then they were mixed with NFC to prepare a series of NFC-based composite films. The effect of Al2O3 particle sizes on the thermal conductivity of NFC-based composite films was studied. The results showed that the surface areas of l-Al2O3 particles were smaller than that of s-Al2O3 particles, resulting in the smaller interface thermal resistance and superior thermal conductivity of the film containing l-Al2O3 particles. The NFC-based composite films showed great potential for the applications in thermal management by adjusting the particle size of fillers.


2021 ◽  
Vol 22 (23) ◽  
pp. 12939
Author(s):  
Sergejs Beluns ◽  
Oskars Platnieks ◽  
Sergejs Gaidukovs ◽  
Olesja Starkova ◽  
Alisa Sabalina ◽  
...  

Cellulose materials and products are frequently affected by environmental factors such as light, temperature, and humidity. Simulated UV irradiation, heat, and moisture exposure were comprehensively used to characterize changes in cellulose nanopaper (NP) tensile properties. For the preparation of NP, high-purity cellulose from old, unused filter paper waste was used. Lignin and xylan were used as sustainable green interface engineering modifiers for NP due to their structural compatibility, low price, nontoxic nature, and abundance as a by-product of biomass processing, as well as their ability to protect cellulose fibers from UV irradiation. Nanofibrillated cellulose (NFC) suspension was obtained by microfluidizing cellulose suspension, and NP was produced by casting films from water suspensions. The use of filler from 1 to 30 wt% significantly altered NP properties. All nanopapers were tested for their sensitivity to water humidity, which reduced mechanical properties from 10 to 40% depending on the saturation level. Xylan addition showed a significant increase in the specific elastic modulus and specific strength by 1.4- and 2.8-fold, respectively. Xylan-containing NPs had remarkable resistance to UV irradiation, retaining 50 to 90% of their initial properties. Lignin-modified NPs resulted in a decreased mechanical performance due to the particle structure of the filler and the agglomeration process, but it was compensated by good property retention and enhanced elongation. The UV oxidation process of the NP interface was studied with UV-Vis and FTIR spectroscopy, which showed that the degradation of lignin and xylan preserves a cellulose fiber structure. Scanning electron microscopy images revealed the structural formation of the interface and supplemented understanding of UV aging impact on the surface and penetration depth in the cross-section. The ability to overcome premature aging in environmental factors can significantly benefit the wide adaption of NP in food packaging and functional applications.


Sign in / Sign up

Export Citation Format

Share Document