transient combustion
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 1)

Shock Waves ◽  
2020 ◽  
Vol 30 (3) ◽  
pp. 245-261
Author(s):  
V. V. Vlasenko ◽  
V. A. Sabelnikov ◽  
S. S. Molev ◽  
O. V. Voloshchenko ◽  
M. A. Ivankin ◽  
...  

2019 ◽  
Vol 194 ◽  
pp. 104310 ◽  
Author(s):  
V. Bykov ◽  
A. Kiverin ◽  
A. Koksharov ◽  
I. Yakovenko
Keyword(s):  

Author(s):  
V.E. Zarko

The computer code is elaborated for numerical simulation of transient combustion of energetic materials (EM) subjected to the action of time-dependent heat flux and under transient pressure conditions. It allows studying combustion response upon interrupted irradiation (transient pressure) and under action of periodically varied heat flux (pressure) in order to determine stability of ignition transients and parameters of transient combustion. The originally solid EM melts and then evaporates at the surface. It is assumed that chemical transformations occur both in the condensed and gas phases. At the burning surface, the phase transition condition in the form of Clapeyron-Clausius law for equilibrium evaporation is formulated that corresponds to the case of combustion of sublimated or melted EM. The paper contains description of transient combustion problem formulation and several examples of transient combustion modeling. At present time a precise prediction of transient burning rate characteristics is impossible because of the lack of information about magnitude of EM parameters at high temperatures. However, the simulation results bring valuable qualitative information about burning rate behavior at variations in time of external conditions – radiant flux and pressure.


Author(s):  
V.V. VLASENKO ◽  
◽  
V.A. SABELNIKOV ◽  
S.S. MOLEV ◽  
O.V. VOLOSHCHENKO ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2043 ◽  
Author(s):  
Tiantian Yang ◽  
Tie Wang ◽  
Guoxing Li ◽  
Jinhong Shi ◽  
Xiuquan Sun

Fischer-Tropsch diesel fuel synthesized from coal (CFT) is an alternative fuel that gives excellent emission performance in compression ignition (CI) engines. In order to study the vibration characteristics, which are important for determining the applicability of the fuel, CFT-diesel blends were tested on a CI engine to acquire vibration signals from the engine head and block. Based on the FFT and continuous wavelet transformation (CWT) analysis, the influence of CFT on the vibration was studied. The results showed that the root mean square (RMS) values of the vibration signal decrease as the proportion of CFT in the blends increases. The CWT results indicated that the vibration energy areas motivated by the pressure shock of transient combustion were weak with increasing CFT proportion for the different frequency bands. The blend of 90% pure petro-diesel and 10% CFT registered the largest RMS value for piston side thrust response, and the RMS of high-frequency pressure oscillation response is greater than that of the main response of combustion, for FT30. Therefore, CFT has the potential to reduce the combustion vibration of the engine at all frequency bands, and there is a possibility that the proportion of blended fuel can be modified to satisfy the vibration characteristics requirements in different frequency bands.


Sign in / Sign up

Export Citation Format

Share Document