NUMERICAL STUDY OF ENHANCED HEAT TRANSFER BY COUPLING NATURAL AND ELECTRO-CONVECTIONS IN A HORIZONTAL ENCLOSURE

2011 ◽  
Vol 18 (6) ◽  
pp. 503-511 ◽  
Author(s):  
R. Ghazi ◽  
Mohammad S. Saidi ◽  
Mohammad Hasan Saidi
2006 ◽  
Vol 326-328 ◽  
pp. 1145-1148
Author(s):  
Ho Dong Yang ◽  
Yool Kwon Oh

The present study is investigated the causes of enhanced heat transfer during the melting process of solid-liquid PCM (Phase Change Material) using an ultrasonic vibration. Paraffin (noctadecane) was selected as a PCM and experimental studies were performed as following. Heat transfer coefficient and enhancement ratio of heat transfer was measured, acoustic streaming induced by ultrasonic waves observed using a PIV (Particle Image Velocimetry) and thermally oscillating flow phenomenon observed using an infrared thermal camera during the melting process. For the numerical study, a coupled FE-BEM (Finite Element-Boundary Element Method) was applied to investigate acoustic pressure occurred by acoustic streaming in a medium. And then, the profiles of pressure variation compared with the enhancement ratio of heat transfer. The results of this study revealed that ultrasonic vibrations accompanied the effects like acoustic streaming and thermally oscillating flow. Such effects are a prime mechanism in the overall melting process when ultrasonic vibrations are applied. Also, as the acoustic pressure occurred by acoustic streaming increases, the higher enhancement ratio of heat transfer is obtained.


2010 ◽  
Author(s):  
H. X. Zhao ◽  
J. T. Han ◽  
Z. T. Yu ◽  
L. Shao ◽  
M. X. Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document