The role of cross thermal buoyancy in initiating vortex shedding behind a permeable square cylinder at low Reynolds numbers

Author(s):  
Chandan Kumar ◽  
Dipankar Chatterjee ◽  
Bittagopal Mondal
2007 ◽  
Vol 573 ◽  
pp. 171-190 ◽  
Author(s):  
A. DIPANKAR ◽  
T. K. SENGUPTA ◽  
S. B. TALLA

Vortex shedding behind a cylinder can be controlled by placing another small cylinder behind it, at low Reynolds numbers. This has been demonstrated experimentally by Strykowski & Sreenivasan (J. Fluid Mech. vol. 218, 1990, p. 74). These authors also provided preliminary numerical results, modelling the control cylinder by the innovative application of boundary conditions on some selective nodes. There are no other computational and theoretical studies that have explored the physical mechanism. In the present work, using an over-set grid method, we report and verify numerically the experimental results for flow past a pair of cylinders. Apart from providing an accurate solution of the Navier–Stokes equation, we also employ an energy-based receptivity analysis method to discuss some aspects of the physical mechanism behind vortex shedding and its control. These results are compared with the flow picture developed using a dynamical system approach based on the proper orthogonal decomposition (POD) technique.


Meccanica ◽  
2020 ◽  
Vol 55 (5) ◽  
pp. 1037-1059
Author(s):  
Bo An ◽  
J. M. Bergadà ◽  
F. Mellibovsky ◽  
W. M. Sang ◽  
C. Xi

2009 ◽  
Vol 61 (6) ◽  
pp. 658-682 ◽  
Author(s):  
A. P. Singh ◽  
A. K. De ◽  
V. K. Carpenter ◽  
V. Eswaran ◽  
K. Muralidhar

Sign in / Sign up

Export Citation Format

Share Document