VISUALIZATION OF DROPWISE CONDENSATION USING SURFACE PLASMON RESONANCE (SPR) REFLECTANCE MICROSCOPY

Author(s):  
Vinaykumar Konduru ◽  
Dong Hwan Shin ◽  
Chang Kyoung Choi ◽  
Jeffrey Allen
2019 ◽  
Vol 61 (1) ◽  
Author(s):  
Shahab Bayani Ahangar ◽  
Vinaykumar Konduru ◽  
Jeffrey S. Allen ◽  
Nenad Miljkovic ◽  
Seong Hyuk Lee ◽  
...  

Abstract This paper describes the fabrication and testing of a novel angle-scanning surface plasmon resonance imaging (SPRi) instrument. The combination of two stationary mirrors and two angle-controlled mirrors provides high accuracy (up to 10−3°) and high-speed angular probing. This instrument minimizes the angle-dependent image artifact that arises due to beam walk, which is the biggest challenge for the use of SPRi with angular modulation (AM). In the work described in this paper, two linear stages were employed to minimize the image artifact by adjusting the location of the angle-controlled mirrors and the camera. The SPRi instrument was used to visualize coalescence during dropwise condensation. The results show that the effect of the environment’s temperature on reflectance was less than 1% when the incident angle was carefully chosen for SPRi with intensity modulation (IM). This means that condensation visualization can be carried out at ambient temperatures, without the need for a Peltier stage or a thermally controlled condensing surface. The concept of pixel neighboring was employed to assess the probability of noise and the standard error of thin film measurement. Experimental analyses during dropwise condensation show (1) the presence of a thin film with thickness of one monolayer, and (2) surface coverage of 0.71 m2/m2 by the thin film in the area between the droplets. In addition, analyses showed the existence of a dry area at the part of the substrate exposed by coalescence to ambient air. The results of this work undermine the validity of the film rupture theory as the dropwise condensation mechanism. Graphic abstract


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Shahab Bayani Ahangar ◽  
Jeffrey S. Allen ◽  
Seong Hyuk Lee ◽  
Chang Kyoung Choi

Abstract To understand the physics behind dropwise condensation, a microscopy technique must be able to measure a sub-nanometer film at a high temporal resolution (>1,000 FPS). In this work, automated Surface Plasmon Resonance imaging (SPRi) is used as a tool to study the existence of a thin film between the dropwise condensate. SPRi is a label-free imaging technique that works based on the attenuated total internal reflection. SPRi can detect changes in the refractive index (RI) of the test medium in the thin region (<300 nm) above the sensing gold layer. The automated, angle-scanning SPRi instrument was developed by integrating linear and rotating motorized stages. This instrument improves conventional SPRi by enhancing the resolution of angle probing, increasing the speed of angle scanning, and minimizing the angle-dependent image artifacts. As a proof of concept, we visualized the three stages of coalescence at 10,000 FPS, including bridge formation, composite peanut-shape droplet formation, and the relaxation stage. Furthermore, we probed the solid-vapor interface during the dropwise condensation to evaluate the existence of a thin film on the substrate. The results of our visualization show that the area between droplets is covered by an adsorbed film with a thickness of a monolayer (0.275 nm) and a surface coverage of less than one (m2/m2). Moreover, the results reveal a dry region forms on the substrate when part of the substrate is exposed to ambient conditions due to the coalescence. The dry zone on the substrate has higher surface energy, as compared to the surrounding area. Therefore, the exposed area serves as a favorable site for vapor molecules to strike the surface and form new nuclei.


2020 ◽  
pp. 44-49
Author(s):  
I. N. Pavlov

Two optical methods, namely surface plasmon resonance imaging and frustrated total internal reflection, are described in the paper in terms of comparing their sensitivity to change of refractive index of a thin boundary layer of an investigated medium. It is shown that, despite the fact that the theoretically calculated sensitivity is higher for the frustrated total internal reflection method, and the fact that usually in practice the surface plasmon resonance method, on the contrary, is considered more sensitive, under the same experimental conditions both methods show a similar result.


2010 ◽  
Vol 130 (7) ◽  
pp. 269-274 ◽  
Author(s):  
Takeshi Onodera ◽  
Takuzo Shimizu ◽  
Norio Miura ◽  
Kiyoshi Matsumoto ◽  
Kiyoshi Toko

2015 ◽  
Vol E98.C (2) ◽  
pp. 136-138 ◽  
Author(s):  
Keisuke KAWACHI ◽  
Kazunari SHINBO ◽  
Yasuo OHDAIRA ◽  
Akira BABA ◽  
Keizo KATO ◽  
...  

PIERS Online ◽  
2008 ◽  
Vol 4 (7) ◽  
pp. 746-750 ◽  
Author(s):  
Bing-Hung Chen ◽  
Yih-Chau Wang ◽  
Jia-Hng Lin

2018 ◽  
Author(s):  
Yong Cao ◽  
Mark T. McDermott

<div> <div> <div> <p>Quantitative measurement of small-molecule metabolites is now emerging as an effective way to link the metabolite profile to disease state. Surface plasmon resonance (SPR) is a sensing platform that has demonstrated applicability for a large range of biomolecules. However, direct detection of small molecules with SPR challenges the refractive index based detection mechanism. Herein, we utilized an indirect detection format and developed an inhibition immunoassay for the quantitative measurement of 17β-estradiol (E2) using SPR. One competitor, BSA-E2 conjugate, was immobilized to the SPR chip via the reaction between the primary amino group of the conjugate and the succinimide group (NHS) introduced by the formation of a thiol-NHS monolayer on gold surface. Free E2 molecules compete with BSA-E2 on chip surface for binding sites provided by a monoclonal anti-E2 antibody. It was found the binding affinity of the antibody to BSA-E2 conjugate increases with decreasing surface coverage of BSA-E2 conjugate. Under optimal conditions, a sigmoidal calibration curve with a negative slope and a dynamic range from 10 pM to 2 nM was generated. The detection limit of the immunoassay is estimated to be 0.3 pM. Moreover, the immunoassay exhibits high specificity for E2 detection using estrone (E1) as a potential interference.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document