scholarly journals Web asymmetry in the tetragnathid orb spiderMetellina mengei(Blackwell, 1869) is determined by web inclination and web size

2018 ◽  
Vol 46 (2) ◽  
pp. 370-372 ◽  
Author(s):  
Nicholas Tew ◽  
Thomas Hesselberg
Keyword(s):  
2010 ◽  
Vol 97 (12) ◽  
pp. 1097-1105 ◽  
Author(s):  
Matjaž Kuntner ◽  
Matjaž Gregorič ◽  
Daiqin Li
Keyword(s):  

2020 ◽  
Author(s):  
Dylan G. E. Gomes ◽  
Thomas Hesselberg ◽  
Jesse R. Barber

2007 ◽  
Vol 3 (5) ◽  
pp. 456-458 ◽  
Author(s):  
Todd A Blackledge ◽  
Chad M Eliason

Evolutionary conflict in trait performance under different ecological contexts is common, but may also arise from functional coupling between traits operating within the same context. Orb webs first intercept and then retain insects long enough to be attacked by spiders. Improving either function increases prey capture and they are largely determined by different aspects of web architecture. We manipulated the mesh width of orbs to investigate its effect, along with web size, on prey capture by spiders and found that they functioned independently. Probability of prey capture increased with web size but was not affected by mesh width. Conversely, spiders on narrow-meshed webs were almost three times more likely to capture energetically profitable large insects, which demand greater prey retention. Yet, the two functions are still constrained during web spinning because increasing mesh width maximizes web size and hence interception, while retention is improved by decreasing mesh width because more silk adheres to insects. The architectural coupling between prey interception and retention has probably played a key role in both the macroevolution of orb web shape and the expression of plasticity in the spinning behaviours of spiders.


2019 ◽  
Author(s):  
Jeremy B. Yoder ◽  
Giancarlo Gomez ◽  
Colin J. Carlson

ABSTRACTBotanists have long identified bilaterally symmetrical (zygomorphic) flowers with more specialized pollination interactions than radially symmetrical (actinomorphic) flowers. Zygomorphic flowers facilitate more precise contact with pollinators, guide pollinator behaviour, and exclude less effective pollinators. However, whether zygomorphic flowers are actually visited by a smaller subset of available pollinator species has not been broadly evaluated. We compiled 53,609 floral visitation records in 159 communities and classified the plants’ floral symmetry. Globally and within individual communities, plants with zygomorphic flowers are indeed visited by fewer species. At the same time, zygomorphic flowers share a somewhat larger proportion of their visitor species with other co-occurring plants, and have particularly high sharing with co-occurring plants that also have zygomorphic flowers. Visitation sub-networks for zygomorphic species also show differences that may arise from reduced visitor diversity, including greater connectance, greater web asymmetry, and lower coextinction robustness of both plants and visitor species — but these changes do not necessarily translate to whole plant-visitor communities. These results provide context for widely documented associations between zygomorphy and diversification and imply that species with zygomorphic flowers may face greater risk of extinction due to pollinator loss.


2000 ◽  
Vol 48 (2) ◽  
pp. 217 ◽  
Author(s):  
M. E. Herberstein

Orb web spiders in the genus Argiope attach highly visible silk bands called decorations or stabilimenta to their webs. Two different hypotheses regarding the function of these structures were investigated in the field using Argiope keyserlingi: prey attraction and anti-predatory device. The first hypothesis suggests that web decorations attract prey to the web, and webs carrying decorations will capture more prey than those without. A field census of prey capture showed that webs adorned with more decorative bands indeed captured more but similarly sized prey per hour compared with webs carrying fewer decorations. Web height or web size, however, were not related to the rate of prey capture. This pattern was confirmed by a paired comparison of prey-capture rates within individuals that increased or decreased the number of decorative bands on consecutive days. Individuals that used more decorations also captured more prey compared with days when they spun fewer decorations. The second hypothesis suggests that these structures function as anti-predatory devices and, consequently, spiders on decorated webs benefit from a lower rate of mortality than spiders on undecorated webs. A census of the mortality rates of spiders over 19 days revealed that spiders did not disappear from undecorated webs more frequently than from decorated webs. Consequently, the idea that web decorations act as anti-predatory devices in A. keyserlingi was not supported.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Simonsen ◽  
Thomas Hesselberg

AbstractIn the last decade there has been a renewed interest in the study of behavioural adaptations to environmental constraints with a focus on adaptations to challenging habitats due to their reduced ecological complexity. However, behavioural studies on organisms adapted to nutrient poor subterranean habitats are few and far between. Here, we compared both morphological traits, in terms of relative leg lengths, and behavioural traits, captured in the geometry of the spider web, between the cave-dwelling spider, Meta menardi, and two aboveground species from the same family (Tetragnathidae); Metellina mengei and Tetragnatha montana. We found that the webs of the cave spider differed significantly from the two surface-dwelling species. The most dramatic difference was the lack of frame threads with the radii in the webs instead attaching directly to the surrounding rock, but other differences in relative web size, web asymmetry and number of capture spiral threads were also found. We argue that these modifications are likely to be adaptations to allow for a novel foraging behaviour to additionally capture walking prey within the vicinity of the web. We found only limited evidence for morphological adaptations and suggest that the cave orb spider could act as a model organism for studies of behaviour in energy-poor environments.


2002 ◽  
Vol 149 (3) ◽  
pp. 86 ◽  
Author(s):  
E. Mendes ◽  
N. Mosley ◽  
S. Counsell
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document