Does ontogenetic change in orb web asymmetry reflect biogenetic law?

2010 ◽  
Vol 97 (11) ◽  
pp. 1029-1032 ◽  
Author(s):  
Kensuke Nakata
2013 ◽  
Vol 100 (3) ◽  
pp. 263-268 ◽  
Author(s):  
Matjaž Gregorič ◽  
Heine C. Kiesbüy ◽  
Shakira G. Quiñones Lebrón ◽  
Alenka Rozman ◽  
Ingi Agnarsson ◽  
...  

2018 ◽  
Author(s):  
Juan Carlos Villaseñor-Derbez

Stomach contents were analyzed from 109 individuals. A total of 4 Genera and 14 Species were identified. Crustaceans accounted for %N=67.39% , %IRI= 86.37% of the total identified taxa and Teleosts %N=32.61% (%IRI = 13.63%). An ontogenetic change was observed in P. volitans diet.


1985 ◽  
Vol 72 (12) ◽  
pp. 666-667 ◽  
Author(s):  
F. Vollrath ◽  
W. Mohren
Keyword(s):  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Cory A. Berger ◽  
Michael S. Brewer ◽  
Nobuaki Kono ◽  
Hiroyuki Nakamura ◽  
Kazuharu Arakawa ◽  
...  

Abstract Background A striking aspect of evolution is that it often converges on similar trajectories. Evolutionary convergence can occur in deep time or over short time scales, and is associated with the imposition of similar selective pressures. Repeated convergent events provide a framework to infer the genetic basis of adaptive traits. The current study examines the genetic basis of secondary web loss within web-building spiders (Araneoidea). Specifically, we use a lineage of spiders in the genus Tetragnatha (Tetragnathidae) that has diverged into two clades associated with the relatively recent (5 mya) colonization of, and subsequent adaptive radiation within, the Hawaiian Islands. One clade has adopted a cursorial lifestyle, and the other has retained the ancestral behavior of capturing prey with sticky orb webs. We explore how these behavioral phenotypes are reflected in the morphology of the spinning apparatus and internal silk glands, and the expression of silk genes. Several sister families to the Tetragnathidae have undergone similar web loss, so we also ask whether convergent patterns of selection can be detected in these lineages. Results The cursorial clade has lost spigots associated with the sticky spiral of the orb web. This appears to have been accompanied by loss of silk glands themselves. We generated phylogenies of silk proteins (spidroins), which showed that the transcriptomes of cursorial Tetragnatha contain all major spidroins except for flagelliform. We also found an uncharacterized spidroin that has higher expression in cursorial species. We found evidence for convergent selection acting on this spidroin, as well as genes involved in protein metabolism, in the cursorial Tetragnatha and divergent cursorial lineages in the families Malkaridae and Mimetidae. Conclusions Our results provide strong evidence that independent web loss events and the associated adoption of a cursorial lifestyle are based on similar genetic mechanisms. Many genes we identified as having evolved convergently are associated with protein synthesis, degradation, and processing, which are processes that play important roles in silk production. This study demonstrates, in the case of independent evolution of web loss, that similar selective pressures act on many of the same genes to produce the same phenotypes and behaviors.


2012 ◽  
Vol 8 (4) ◽  
pp. 660-664 ◽  
Author(s):  
K. T. Bates ◽  
P. L. Falkingham

Bite mechanics and feeding behaviour in Tyrannosaurus rex are controversial. Some contend that a modest bite mechanically limited T. rex to scavenging, while others argue that high bite forces facilitated a predatory mode of life. We use dynamic musculoskeletal models to simulate maximal biting in T. rex . Models predict that adult T. rex generated sustained bite forces of 35 000–57 000 N at a single posterior tooth, by far the highest bite forces estimated for any terrestrial animal. Scaling analyses suggest that adult T. rex had a strong bite for its body size, and that bite performance increased allometrically during ontogeny. Positive allometry in bite performance during growth may have facilitated an ontogenetic change in feeding behaviour in T. rex , associated with an expansion of prey range in adults to include the largest contemporaneous animals.


1986 ◽  
Vol 60 (1) ◽  
pp. 4-13 ◽  
Author(s):  
Kenneth J. McNamara

Since Haeckel's Biogenetic Law (‘ontogeny recapitulates phylogeny’) fell into disrepute early in the twentieth century, there has been intermittent debate, particularly in recent years (de Beer, 1958; Gould, 1977; Alberch et al., 1979; Alberch, 1980; Bonner, 1982; McNamara, 1982a), on the nature of the relationship between an individual's development and phylogenetic history. Important questions under discussion include the following: If a strong causal relationship does exist, what is its nature? How does it work? What is its importance in evolution? How can it be recognized in the fossil record?


1994 ◽  
Vol 5 (3) ◽  
pp. 280-287 ◽  
Author(s):  
Alun ap Rhisiart ◽  
Fritz Vollrath

Sign in / Sign up

Export Citation Format

Share Document