pollinator species
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 39)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 322 ◽  
pp. 107653 ◽  
Author(s):  
Julia Osterman ◽  
Marcelo A. Aizen ◽  
Jacobus C. Biesmeijer ◽  
Jordi Bosch ◽  
Brad G. Howlett ◽  
...  

2021 ◽  
Author(s):  
Margaret R Douglas ◽  
Paige Baisley ◽  
Sara Soba ◽  
Melanie Kammerer ◽  
Eric V Lonsdorf ◽  
...  

Wild and managed pollinators are essential to food production and the function of natural ecosystems; however, their populations are threatened by multiple stressors including pesticide use. Because pollinator species can travel hundreds to thousands of meters to forage, recent research has stressed the importance of evaluating pollinator decline at the landscape scale. However, scientists' and conservationists' ability to do this has been limited by a lack of accessible data on pesticide use at relevant spatial scales and in toxicological units meaningful to pollinators. Here, we synthesize information from several large, publicly available datasets on pesticide use patterns, land use, and toxicity to generate novel datasets describing pesticide use by active ingredient (kg, 1997-2017) and aggregate insecticide load (kg and honey bee lethal doses, 1997-2014) for state-crop combinations in the contiguous U.S. Furthermore, by linking pesticide datasets with land-use data in the contiguous United States, we describe a method to map pesticide indicators at spatial scales relevant to pollinator research and conservation.


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Hui Yu ◽  
Yaolin Liao ◽  
Yufen Cheng ◽  
Yongxia Jia ◽  
Stephen G. Compton

Abstract Background The obligate mutualism between fig trees (Ficus, Moraceae) and pollinating fig wasps (Agaonidae) is a model system for studying co-evolution due to its perceived extreme specificity, but recent studies have reported a number of examples of trees pollinated by more than one fig wasp or sharing pollinators with other trees. This will make the potential of pollen flow between species and hybridization more likely though only few fig hybrids in nature have been found. We reared pollinator fig wasps from figs of 13 Chinese fig tree species and established their identity using genetic methods in order to investigate the extent to which they were supporting more than one species of pollinator (co-pollinator). Results Our results showed (1) pollinator sharing was frequent among closely-related dioecious species (where pollinator offspring and seeds develop on different trees); (2) that where two pollinator species were developing in figs of one host species there was usually one fig wasp with prominent rate than the other. An exception was F. triloba, where its two pollinators were equally abundant; (3) the extent of co-pollinator within one fig species is related to the dispersal ability of them which is stronger in dioecious figs, especially in small species. Conclusions Our results gave more examples to the breakdown of extreme specificity, which suggest that host expansion events where pollinators reproduce in figs other than those of their usual hosts are not uncommon among fig wasps associated with dioecious hosts. Because closely related trees typically have closely related pollinators that have a very similar appearance, the extent of pollinator-sharing has probably been underestimated. Any pollinators that enter female figs carrying heterospecific pollen could potentially generate hybrid seed, and the extent of hybridization and its significance may also have been underestimated.


Author(s):  
Urmila Dyola ◽  
Chitra Baniya ◽  
Pushpa Acharya ◽  
Pradip Subedi ◽  
Anjeela Pandey ◽  
...  

Insect pollinators are important means for a stable ecosystem. The habitat types play a crucial role in the community composition, abundance, diversity, and species richness of the pollinators. The present study in Shivapuri–Nagarjun National Park explored the species richness and abundances of insect pollinators in four different habitats and different environmental variables in determining the community composition of the pollinators. Data were collected from 1500 m–2700 m using pan traps and hand sweeping methods. Non–metric multidimensional scaling (NMDS) and redundancy analysis (RDA) were conducted to show the association between insect pollinators and environmental variables. The results firmly demonstrated that species richness and abundances were higher in open trails compared to other habitats. The distribution of the pollinator species was more uniform in the open trail followed by the grassland. Similarly, a strong positive correlation between flower resources and pollinator’s abundance was found. In conclusion, the open trail harbor rich insect pollinators in lower elevation. The community structure of the pollinators was strongly influenced by the presence of flowers in the trails.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mohamad Abdallah ◽  
Sandra Hervías-Parejo ◽  
Anna Traveset

Understanding the mechanisms by which non-native plants can attract pollinators in their new geographical zones is important because such species infiltrate native communities and can disrupt native ecological interactions. Despite the large number of studies assessing how invasive plants impact plant–pollinator interactions, the specific comparison of pollination interactions between native and non-native plant pairs has received much less attention. Here we focused on four coexisting co-flowering pairs of common native and non-native species, both with abundant flowers but different floral traits, and asked: (1) to what extent native and non-native plants share pollinator species, and whether the non-native plants attract a different set of pollinators, (2) whether the most shared pollinators are the most frequent floral visitors and the most generalized in their interactions, and (3) how much of the variation in the diversity and frequency of pollinator species between native and non-native plant species can be explained by floral trait dissimilarity and flower abundance. Direct pollinator observations revealed that the plant pairs shared a low fraction (0–33%) of insect species, i.e., non-native plants tended to acquire a different set of pollinators than their native counterparts. The most shared pollinators in each plant pair were the most common but not the most generalized species, and non-native species attracted both generalized and specialized pollinators. Corolla length at opening and flower abundance showed to be important in determining the differences in flower visitation rate between natives and non-natives. Our findings support the general pattern that non-native species have no barriers at the pollination stage to integrate into native communities and that they may attract a different assemblage of pollinators relative to those that visit native plants with which they coexist.


Author(s):  
Florian Straub ◽  
Ihotu Joy Orih ◽  
Judith Kimmich ◽  
Manfred Ayasse

Insect species richness and abundance has declined rapidly over the last few decades. Various stressors, such as the conversion of natural habitats, climate change, land-use intensification, agrochemicals and pathogens, are thought to be major factors in this decline. We treated female bees of two common pollinator species in Europe, Osmia bicornis and Bombus terrestris, with a field-realistic dose of the neonicotinoid clothianidin. We tested its effects on the foraging behavior of O. bicornis under semi-natural conditions and on the antennal sensitivity of both bee species to common floral volatiles by using electroantennography. Clothianidin negatively affected the foraging behavior in O. bicornis by decreasing the number of flowers visited per foraging flight and by increasing the time per flower visit and the searching time between two flowers. It also decreased the antennal sensitivity to 2-phenylethanol in the two bee species. Thus, clothianidin is clearly a threat for bees via its effects on their foraging behavior and antennal sensitivity and is hence probably detrimental for pollination and the reproductive success of bees.


2021 ◽  
Vol 13 (16) ◽  
pp. 9051
Author(s):  
David Urbán-Duarte ◽  
José Fernando De La Torre-Sánchez ◽  
Yooichi Kainoh ◽  
Kazuo Watanabe

The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) confirmed that pollinators have declined in abundance and diversity; additionally, there is insufficient data for Latin America. Thus, we performed a review on scientific studies and databases to determine the state of the art of the diversity of three pollinator animals (bees, hummingbirds, and bats) in Mexico as well as an analysis of relevant public policies to conserve these species. We found 2063 bee species reported to be present in Mexico. The biodiversity of hummingbirds (58 species) and pollinator bats (12 species) is well known. We identified 57 scientific studies published in the last 20 years related to the biodiversity of bees (30 studies), hummingbirds (16 studies), and pollinator bats (11 studies). Relatively few, or no current studies on hummingbirds and pollinators bats at risk as well as for more than 1000 bee species is available. Great efforts have been made about policies and programs to improve the knowledge and conservation of pollinators in Mexico the last years such as the Species at Risk Conservation Program (PROCER), the Species Conservation Action Program (PACE), and the Natural Protected Ares System (CONANP). However, information of the status of many species and regions is still scarce. Thus, more studies about biodiversity, density, and trends as well as studies of the impact of policies and programs on pollinator species in Mexico are needed.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 636
Author(s):  
Maryse Vanderplanck ◽  
Benoît Lapeyre ◽  
Margot Brondani ◽  
Manon Opsommer ◽  
Mathilde Dufay ◽  
...  

Concentration of air pollutants, particularly ozone (O3), has dramatically increased since pre-industrial times in the troposphere. Due to the strong oxidative potential of O3, negative effects on both emission and lifetime in the atmosphere of plant volatile organic compounds (VOCs) have already been highlighted. VOCs alteration by O3 may potentially affect the attraction of pollinators that rely on these chemical signals. Surprisingly, direct effects of O3 on the olfaction and the behavioral response of pollinators have not been investigated so far. We developed a comprehensive experiment under controlled conditions to assess O3 physiological and behavioral effects on two pollinator species, differing in their ecological traits. Using several realistic concentrations of O3 and various exposure times, we investigated the odor antennal detection and the attraction to VOCs present in the floral scents of their associated plants. Our results showed, in both species, a clear effect of exposure to high O3 concentrations on the ability to detect and react to the floral VOCs. These effects depend on the VOC tested and its concentration, and the O3 exposure (concentration and duration) on the pollinator species. Pollination systems may, therefore, be impaired in different ways by increased levels of O3, the effects of which will likely depend on whether the exposure is chronic or, as in this study, punctual, likely causing some pollination systems to be more vulnerable than others. While several studies have already shown the negative impact of O3 on VOCs emission and lifetime in the atmosphere, this study reveals, for the first time, that this impact alters the pollinator detection and behavior. These findings highlight the urgent need to consider air pollution when evaluating threats to pollinators.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247124
Author(s):  
Asif Sajjad ◽  
Junhe Liu ◽  
Yusha Wang ◽  
Muhammad Aslam Farooqi ◽  
Zihua Zhao ◽  
...  

Assessment of resource partitioning in pollinators at a particular place can be used to conserve plant communities by minimizing their inter-specific competition. Current study was conducted to investigate the occurrence of this phenomenon among plant communities under sub-tropical conditions for the first time in Pakistan. We considered the entire available flowering plant and floral visitor communities in the study area—Lal Suhanra forest of Bahawalpur, Pakistan- along with different variations among them based on morphology, color and symmetry (functional groups) i.e. four functional groups among insects and nine among plants. Weekly floral visitor censuses were conducted during spring season -from the first week of March to the fourth week of May 2018. Thirty individuals of each plant species -in bloom- were observed for floral visitors in each census. Plant species with different floral shapes, colors and symmetry did not show any significant resource partitioning. The Non-metric multidimensional scaling analysis followed by one-way ANOSIM test showed non- significant differences among all the pair of floral shapes, colors (except white and yellow) and symmetry (R-value < 0.168). However, SIMPER test suggested that flies were the most common group that contributed more towards within group similarities of different floral shapes (19 to 21% similarity), colors (16 to 30%) and symmetry (19%) followed by long-tongue bees i.e. 14 to 21%, 9 to 19% and 18%, respectively. Our results suggest that plant communities under sub-tropical conditions of Pakistan exhibit a generalist pollination system with no significant resource partitioning in pollinator species. Therefore, plant communities may have high competition for pollinator species which exhibits fewer implications of species loss on overall pollination process. Our study provides the basis for understanding the partitioning of pollinator guilds under sub-tropical conditions. Future studies should focus on functional traits in more detail at the community and the population scales for their possible impact on resource partitioning.


PLoS Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. e3000796
Author(s):  
Marcos Sterkel ◽  
Lee R. Haines ◽  
Aitor Casas-Sánchez ◽  
Vincent Owino Adung’a ◽  
Raquel J. Vionette-Amaral ◽  
...  

Tsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species. Here we present a promising, environment-friendly alternative to current insecticides that targets the insect tyrosine metabolism pathway. A bloodmeal contains high levels of tyrosine, which is toxic to haematophagous insects if it is not degraded and eliminated. RNA interference (RNAi) of either the first two enzymes in the tyrosine degradation pathway (tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)) was lethal to tsetse. Furthermore, nitisinone (NTBC), an FDA-approved tyrosine catabolism inhibitor, killed tsetse regardless if the drug was orally or topically applied. However, oral administration of NTBC to bumblebees did not affect their survival. Using a novel mathematical model, we show that NTBC could reduce the transmission of African trypanosomiasis in sub-Saharan Africa, thus accelerating current disease elimination programmes.


Sign in / Sign up

Export Citation Format

Share Document