Vegetation Refuges of a Sand Lizard Assemblage in Temperate Coastal Sand Dunes

2012 ◽  
Vol 46 (4) ◽  
pp. 608-613 ◽  
Author(s):  
Carolina Block ◽  
Laura E. Vega ◽  
Oscar A. Stellatelli
2008 ◽  
Vol 98 (1) ◽  
pp. 156-160 ◽  
Author(s):  
Clóvis S. Bujes ◽  
Laura Verrastro

The activity pattern of the small sand lizard, Liolaemus occipitalis Boulenger, 1885, was investigated in the coastal sand dunes at Quintão beach (Palmares do Sul, southern, Brazil), between September 1998 and August 1999. The results showed that L. occipitalis is active all along the year, but with variations in its daily and seasonal activity patterns associated to climatic changes in the habitat. Lizard activity pattern was distributed as follows: under the sand, burrowed (73%), under vegetation (14%), dislocation (7%) and basking (6%). Mean habitat temperatures (air and substrate) were significantly different. The results indicate that L. occipitalis is a thigmothermic and heliothermic species that regulates its body temperature through behavioral mechanisms, and that thermoregulation is mainly associated with substrate.


2006 ◽  
Vol 66 (3) ◽  
pp. 945-954 ◽  
Author(s):  
C. S. Bujes ◽  
L. Verrastro

The thermal biology of the small sand lizard, Liolaemus occipitalis, was studied in the coastal sand dunes at Quintão Beach (Palmares do Sul, Rio Grande do Sul, Brazil; 30° 24' S and 50° 17' W), between September, 1998 and August, 1999. Liolaemus occipitalis presented a mean body temperature of 30.89 °C (SD = 4.43 °C; min = 16.4 °C; max = 40.2 °C; N = 270), that varied on a daily and seasonal basis according to microhabitat thermal alterations. The substrate temperature was the main heat source for thermoregulation of L. occipitalis as in all seasons of the year it was responsible for the animals' temperature variation (82% of the collected lizards in the spring; 60% in the summer; 84% in the fall and 68% in the winter). The results indicate that L. occipitalis is a saxicolous, thigmothermic and heliothermic species that regulates its body temperature through behavioral mechanisms.


2021 ◽  
Author(s):  
Julissa Rojas-Sandoval ◽  
Nick Pasiecznik

Abstract E. umbellata is an important deciduous shrub which reaches up to 5 m high and 10 cm in d.b.h. It is found in thickets and sparse woods of Japan, Korea and China. E. umbellata is a shade intolerant pioneer tree and is also commonly found along riversides and seashores in Japan. This species is growing in humid areas with 1000-4000 mm of annual rainfall in Japan. In China it is reported to grow even in semi-arid areas of Nei Menggu, Gansu and Shaanxi province, where annual rainfall is around 400 mm (Niu, 1990). E. umbellata can fix nitrogen and it is tolerant to salt winds, this species is therefore used for fixation of coastal sand dunes in Japan, and is frequently planted mixed with Pinus thunbergii as a soil improving tree. E. umbellata is also planted in eroded areas of mountainous zones to re-establish and develop vegetation. In China, E. umbellata is occasionally cultivated in gardens (Zhang, 1997).


Soil Research ◽  
1996 ◽  
Vol 34 (1) ◽  
pp. 161 ◽  
Author(s):  
CH Thompson ◽  
EM Bridges ◽  
DA Jenkins

An exploratory examination has been made of three different kinds of hardpans found in humus podzols (Humods and Aquods) of the coastal lowlands of southern Queensland, by means of slaking tests, a reactive aluminium test, acid oxalate and pyrophosphate extractions and electron microscopy. Samples from three indurated layers exposed by erosion or sand-mining in large coastal dunes were included for comparison. The investigation confirmed that, a pan in a bleached A2 (albic E) horizon is most likely caused by particle packing and that a pan in a black B2h (spodic) horizon is cemented by an aluminium-organic complex. Yellow-brown pans underlying black organic pans (spodic horizons) were found to be cemented by both a proto-imogolite/allophane complex and an organic substance. An inorganic reactive Al complex differing from the proto-imogolite allophane recorded in the overlying giant podzols appeared to be main cement of three indurated layers in the nearby coastal sand dunes. Mechanical disturbance of the pans, e.g. ripping, is unlikely to improve drainage and effective soil depth in the long term, because the disturbed zones are expected to be re-sealed by packed particles or by the aluminium-organic complex cement.


Sign in / Sign up

Export Citation Format

Share Document