Elaeagnus umbellata (autumn olive).

Author(s):  
Julissa Rojas-Sandoval ◽  
Nick Pasiecznik

Abstract E. umbellata is an important deciduous shrub which reaches up to 5 m high and 10 cm in d.b.h. It is found in thickets and sparse woods of Japan, Korea and China. E. umbellata is a shade intolerant pioneer tree and is also commonly found along riversides and seashores in Japan. This species is growing in humid areas with 1000-4000 mm of annual rainfall in Japan. In China it is reported to grow even in semi-arid areas of Nei Menggu, Gansu and Shaanxi province, where annual rainfall is around 400 mm (Niu, 1990). E. umbellata can fix nitrogen and it is tolerant to salt winds, this species is therefore used for fixation of coastal sand dunes in Japan, and is frequently planted mixed with Pinus thunbergii as a soil improving tree. E. umbellata is also planted in eroded areas of mountainous zones to re-establish and develop vegetation. In China, E. umbellata is occasionally cultivated in gardens (Zhang, 1997).

Soil Research ◽  
1996 ◽  
Vol 34 (1) ◽  
pp. 161 ◽  
Author(s):  
CH Thompson ◽  
EM Bridges ◽  
DA Jenkins

An exploratory examination has been made of three different kinds of hardpans found in humus podzols (Humods and Aquods) of the coastal lowlands of southern Queensland, by means of slaking tests, a reactive aluminium test, acid oxalate and pyrophosphate extractions and electron microscopy. Samples from three indurated layers exposed by erosion or sand-mining in large coastal dunes were included for comparison. The investigation confirmed that, a pan in a bleached A2 (albic E) horizon is most likely caused by particle packing and that a pan in a black B2h (spodic) horizon is cemented by an aluminium-organic complex. Yellow-brown pans underlying black organic pans (spodic horizons) were found to be cemented by both a proto-imogolite/allophane complex and an organic substance. An inorganic reactive Al complex differing from the proto-imogolite allophane recorded in the overlying giant podzols appeared to be main cement of three indurated layers in the nearby coastal sand dunes. Mechanical disturbance of the pans, e.g. ripping, is unlikely to improve drainage and effective soil depth in the long term, because the disturbed zones are expected to be re-sealed by packed particles or by the aluminium-organic complex cement.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Shubhransu Nayak ◽  
Satyaranjan Behera ◽  
Prasad Kumar Dash

Coastal sand dunes are hips and strips formed by sand particles which are eroded and ground rock, derived from terrestrial and oceanic sources. This is considered as a specialized ecosystem characterized by conditions which are hostile for life forms like high salt, low moisture, and low organic matter content. However, dunes are also inhabited by diverse groups of flora, fauna, and microorganisms specifically adapted to these situations. Microbial groups like fungi, bacteria, and actinobacteria are quite abundant in the rhizosphere, phyllosphere, and inside plants which are very much essential for the integration of dunes. Microorganisms in this ecosystem have been found to produce a number of bioactive metabolites which are of great importance to agriculture and industries. Many species of arbuscular mycorrhizal fungi and Rhizobia associated with the roots of dune flora are prolific producers of plant growth promoting biochemicals like indole acetic acid. In addition to that bacteria belonging to Pseudomonas sp., Gammaproteobacteria have been found to have antagonistic activity towards plant pathogens like Rhizoctonia solani, Pythium ultimum, Fusarium oxysporum, and Botrytis cinerea. Many neutrophilic and alkaliphilic eubacterial species, endophytic fungi from dunes have proved their ability for the production of extracellular enzymes like cellulase, pectinase, amylase, protease, tannase, chitinase, etc., which are of great importance to various industries. In this context, it is relevant to observe that the state of Odisha in India has a 480km long coast having numerous sand dunes. These dunes are rich in floral and faunal diversity. However, a comprehensive study is yet to be taken up to explore the microbial diversity and their bioactive potential in this region. The current review sheds light on the enormous potential of sand dune microorganisms in the coast and surfaced the idea and need for such exploration in the state of Odisha, India.


Sign in / Sign up

Export Citation Format

Share Document