Positive Effects of Acclimation Temperature on the Critical Thermal Maxima of Ambystoma mexicanum and Xenopus laevis

2020 ◽  
Vol 54 (3) ◽  
Author(s):  
Alex C. Orille ◽  
Ryan B. McWhinnie ◽  
Sean P. Brady ◽  
Thomas R. Raffel
Author(s):  
Thomas Kurth ◽  
Jürgen Berger ◽  
Michaela Wilsch-Bräuninger ◽  
Susanne Kretschmar ◽  
Robert Cerny ◽  
...  

1985 ◽  
Vol 63 (7) ◽  
pp. 1629-1633 ◽  
Author(s):  
Ihor Hlohowskyj ◽  
Thomas E. Wissing

Seasonal critical thermal maxima (CTMax) were determined for greenside (Etheostoma blennioides), fantail (Etheostoma flabellare), and rainbow (Etheostoma caeruleum) darters. Mean CTMax values for field-acclimatized greenside darters ranged from 26.2 °C in March to 35.1 °C in September. The values for fantail and rainbow darters were 30.8–36.0 °C (March–July) and 30.0–36.4 °C (April–July), respectively. CTMax values for the three species were significantly correlated (P < 0.05) with field water temperature (greenside darter, r = 0.970; rainbow darter, r = 0.964; fantail darter, r = 0.968). Fish acclimated at 10 and 20 °C in the laboratory exhibited significant seasonal changes in CTMax, with the highest values occurring in the summer. Except for fantail darters tested in summer, the three species showed significant relationships between CTMax and acclimation temperature. Seasonal differences were also observed in the slopes of the relationships between CTMax and acclimation temperature. The highest slopes occurred in spring, autumn, or both. Differences in the tolerance of darters to high temperatures and adjustment of tolerance to high temperature may influence their distributions in streams.


1987 ◽  
Vol 65 (2) ◽  
pp. 457-459 ◽  
Author(s):  
Steven R. Scadding

The objective of this investigation was to determine what effect vitamin A had on tail regeneration in Notophthalmus viridescens adults, in Ambystoma mexicanum larvae, and in Xenopus laevis tadpoles. Notophthalmus viridescens and Ambystoma mexicanum had their tails amputated and then were treated with retinol palmitate by immersion in concentrations known to cause proximodistal duplications in regenerating limbs. Xenopus laevis tadpoles had their tails amputated and then were treated with either retinol palmitate by immersion, or with retinoic acid administered by implantation of silastin blocks containing retinoic acid. The results ranged from no effect at all at the lower dose levels used, to complete inhibition of tail regeneration at higher dose levels. The degree of inhibition of tail regeneration appeared to be dose dependent. In no case were any duplicated or accessory structures formed analogous to those observed in regenerating limbs. This result suggests that the morphogenetic processes involved in tail regeneration are at least in some ways different from those occurring in limbs, where a similar vitamin A treatment would cause proximodistal duplication or production of accessory limb structures.


2021 ◽  
Vol 24 (7) ◽  
pp. 235-242
Author(s):  
Md Mofizur Rahman ◽  
Young-Don Lee ◽  
Hea Ja Baek

Sign in / Sign up

Export Citation Format

Share Document