Genetic variation of the glucocorticoid receptor from a steroid-resistant primate

1991 ◽  
Vol 7 (2) ◽  
pp. 89-96 ◽  
Author(s):  
D. D. Brandon ◽  
A. J. Markwick ◽  
M. Flores ◽  
K. Dixon ◽  
B. D. Albertson ◽  
...  

ABSTRACT The neotropical cotton-top marmoset (Saguinus oedipus) is a New World primate known to have markedly increased total and free plasma cortisol concentrations when compared with Old World primates including man. The relative end-organ 'resistance' to glucocorticoids found in various New World primates has been attributed to a glucocorticoid receptor (GR) with diminished affinity for glucocorticoids. It has been demonstrated that the marmoset GR has approximately tenfold lower binding affinity for dexamethasone when compared with the human GR. We have examined the primary structure of the marmoset GR by molecular cloning and sequencing of GR functional domains. A library of cDNA clones was constructed in the phage vector λgt10 using poly(A)+ RNA from a marmoset-derived lymphoid cell line, and screened using the human GR cDNA. DNA sequencing determined 76 individual nucleotide substitutions in the coding region of the marmoset GR. Comparison of the marmoset GR nucleotide sequence with the human GR cDNA coding region indicated an overall sequence homology of about 97%. Thirty of the nucleotide substitutions lead to alterations in the predicted amino acid sequence (28 amino acid substitutions) of the marmoset GR. The size of the marmoset GR predicted from the 778 amino acids is approximately 90 000 which is in agreement with previous size estimates of the human and marmoset GRs. Alterations of amino acid sequence in the marmoset GR were greatest towards the amino terminus, including the τ1 domain putatively involved in transcriptional activation. The DNA-binding domain contained an additional codon (arginine). Comparison of the DNA-binding domain of the marmoset GR with other members of the steroid receptor superfamily indicates that the additional arginine occurs in the same position as other amino acid insertions within the interfinger region of the human androgen receptor and the erb-A proto-oncogene. There are only four missense substitutions within the steroid-binding domain. Two of these substitutions occur within the transducing site which has been associated with binding of the GR to a 90 kDa heat shock protein. These data suggest that diminished GR affinity for glucocorticoids in the marmoset may be due to alterations in the primary structure of one or more functional domains of the GR gene. In addition, other important regulatory functions, such as transcriptional activation, DNA binding and receptor transduction, may also be affected.

1992 ◽  
Vol 12 (2) ◽  
pp. 598-608
Author(s):  
J D Chen ◽  
C S Chan ◽  
V Pirrotta

The zeste gene product is involved in two types of genetic effects dependent on chromosome pairing: transvection and the zeste-white interaction. Comparison of the predicted amino acid sequence with that of the Drosophila virilis gene shows that several blocks of amino acid sequence have been very highly conserved. One of these regions corresponds to the DNA binding domain. Site-directed mutations in this region indicate that a sequence resembling that of the homeodomain DNA recognition helix is essential for DNA binding activity. The integrity of an amphipathic helical region is also essential for binding activity and is likely to be responsible for dimerization of the DNA binding domain. Another very strongly conserved domain of zeste is the C-terminal region, predicted to form a long helical structure with two sets of heptad repeats that constitute two long hydrophobic ridges at opposite ends and on opposite faces of the helix. We show that this domain is responsible for the extensive aggregation properties of zeste that are required for its role in transvection phenomena. A model is proposed according to which the hydrophobic ridges induce the formation of open-ended coiled-coil structures holding together many hundreds of zeste molecules and possibly anchoring these complexes to other nuclear structures.


1992 ◽  
Vol 12 (2) ◽  
pp. 598-608 ◽  
Author(s):  
J D Chen ◽  
C S Chan ◽  
V Pirrotta

The zeste gene product is involved in two types of genetic effects dependent on chromosome pairing: transvection and the zeste-white interaction. Comparison of the predicted amino acid sequence with that of the Drosophila virilis gene shows that several blocks of amino acid sequence have been very highly conserved. One of these regions corresponds to the DNA binding domain. Site-directed mutations in this region indicate that a sequence resembling that of the homeodomain DNA recognition helix is essential for DNA binding activity. The integrity of an amphipathic helical region is also essential for binding activity and is likely to be responsible for dimerization of the DNA binding domain. Another very strongly conserved domain of zeste is the C-terminal region, predicted to form a long helical structure with two sets of heptad repeats that constitute two long hydrophobic ridges at opposite ends and on opposite faces of the helix. We show that this domain is responsible for the extensive aggregation properties of zeste that are required for its role in transvection phenomena. A model is proposed according to which the hydrophobic ridges induce the formation of open-ended coiled-coil structures holding together many hundreds of zeste molecules and possibly anchoring these complexes to other nuclear structures.


1991 ◽  
Vol 11 (11) ◽  
pp. 5735-5745 ◽  
Author(s):  
G F Yuan ◽  
Y H Fu ◽  
G A Marzluf

nit-4, a pathway-specific regulatory gene in the nitrogen circuit of Neurospora crassa, is required for the expression of nit-3 and nit-6, the structural genes which encode nitrate and nitrite reductase, respectively. The complete nucleotide sequence of the nit-4 gene has been determined. The predicted NIT4 protein contains 1,090 amino acids and appears to possess a single Zn(II)2Cys6 binuclear-type zinc finger, which may mediate DNA binding. Site-directed mutagenesis studies demonstrated that cysteine and other conserved amino acid residues in this possible DNA-binding domain are necessary for nit-4 function. A stretch of 27 glutamines, encoded by a CAGCAA repeating sequence, occurs in the C terminus of the NIT4 protein, and a second glutamine-rich domain occurs further upstream. A NIT4 protein deleted for the polyglutamine region was still functional in vivo. However, nit-4 function was abolished when both the polyglutamine region and the glutamine-rich domain were deleted, suggesting that the glutamine-rich domain might function in transcriptional activation. The homologous regulatory gene from Aspergillus nidulans, nirA, encodes a protein whose amino-terminal half has approximately 60% amino acid identity with NIT4 but whose carboxy terminus is completely different. A hybrid nit-4-nirA gene was constructed and found to function in N. crassa.


1994 ◽  
Vol 14 (12) ◽  
pp. 7899-7908
Author(s):  
N Gerwin ◽  
A La Rosée ◽  
F Sauer ◽  
H P Halbritter ◽  
M Neumann ◽  
...  

The Drosophila gap gene knirps (kni) is required for abdominal segmentation. It encodes a steroid/thyroid orphan receptor-type transcription factor which is distributed in a broad band of nuclei in the posterior region of the blastoderm. To identify essential domains of the kni protein (KNI), we cloned and sequenced the DNA encompassing the coding region of nine kni mutant alleles of different strength and kni-homologous genes of related insect species. We also examined in vitro-modified versions of KNI in various assay systems both in vitro and in tissue culture. The results show that KNI contains several functional domains which are arranged in a modular fashion. The N-terminal 185-amino-acid region which includes the DNA-binding domain and a functional nuclear location signal fails to provide kni activity to the embryo. However, a truncated KNI protein that contains additional 47 amino acids exerts rather strong kni activity which is functionally defined by a weak kni mutant phenotype of the embryo. The additional 47-amino-acid stretch includes a transcriptional repressor domain which acts in the context of a heterologous DNA-binding domain of the yeast transcriptional activator GAL4. The different domains of KNI as defined by functional studies are conserved during insect evolution.


1994 ◽  
Vol 14 (12) ◽  
pp. 7899-7908 ◽  
Author(s):  
N Gerwin ◽  
A La Rosée ◽  
F Sauer ◽  
H P Halbritter ◽  
M Neumann ◽  
...  

The Drosophila gap gene knirps (kni) is required for abdominal segmentation. It encodes a steroid/thyroid orphan receptor-type transcription factor which is distributed in a broad band of nuclei in the posterior region of the blastoderm. To identify essential domains of the kni protein (KNI), we cloned and sequenced the DNA encompassing the coding region of nine kni mutant alleles of different strength and kni-homologous genes of related insect species. We also examined in vitro-modified versions of KNI in various assay systems both in vitro and in tissue culture. The results show that KNI contains several functional domains which are arranged in a modular fashion. The N-terminal 185-amino-acid region which includes the DNA-binding domain and a functional nuclear location signal fails to provide kni activity to the embryo. However, a truncated KNI protein that contains additional 47 amino acids exerts rather strong kni activity which is functionally defined by a weak kni mutant phenotype of the embryo. The additional 47-amino-acid stretch includes a transcriptional repressor domain which acts in the context of a heterologous DNA-binding domain of the yeast transcriptional activator GAL4. The different domains of KNI as defined by functional studies are conserved during insect evolution.


1991 ◽  
Vol 11 (11) ◽  
pp. 5735-5745
Author(s):  
G F Yuan ◽  
Y H Fu ◽  
G A Marzluf

nit-4, a pathway-specific regulatory gene in the nitrogen circuit of Neurospora crassa, is required for the expression of nit-3 and nit-6, the structural genes which encode nitrate and nitrite reductase, respectively. The complete nucleotide sequence of the nit-4 gene has been determined. The predicted NIT4 protein contains 1,090 amino acids and appears to possess a single Zn(II)2Cys6 binuclear-type zinc finger, which may mediate DNA binding. Site-directed mutagenesis studies demonstrated that cysteine and other conserved amino acid residues in this possible DNA-binding domain are necessary for nit-4 function. A stretch of 27 glutamines, encoded by a CAGCAA repeating sequence, occurs in the C terminus of the NIT4 protein, and a second glutamine-rich domain occurs further upstream. A NIT4 protein deleted for the polyglutamine region was still functional in vivo. However, nit-4 function was abolished when both the polyglutamine region and the glutamine-rich domain were deleted, suggesting that the glutamine-rich domain might function in transcriptional activation. The homologous regulatory gene from Aspergillus nidulans, nirA, encodes a protein whose amino-terminal half has approximately 60% amino acid identity with NIT4 but whose carboxy terminus is completely different. A hybrid nit-4-nirA gene was constructed and found to function in N. crassa.


1985 ◽  
Vol 260 (4) ◽  
pp. 2301-2306
Author(s):  
H Pande ◽  
J Calaycay ◽  
D Hawke ◽  
C M Ben-Avram ◽  
J E Shively

1990 ◽  
Vol 10 (10) ◽  
pp. 5128-5137 ◽  
Author(s):  
M M Witte ◽  
R C Dickson

LAC9 is a DNA-binding protein that regulates transcription of the lactose-galactose regulon in Kluyveromyces lactis. The DNA-binding domain is composed of a zinc finger and nearby amino acids (M. M. Witte and R. C. Dickson, Mol. Cell. Biol. 8:3726-3733, 1988). The single zinc finger appears to be structurally related to the zinc finger of many other fungal transcription activator proteins that contain positively charged residues and six conserved cysteines with the general form Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-9-Cys-Xaa2-Cys-Xaa 6-Cys, where Xaan indicates a stretch of the indicated number of any amino acids (R. M. Evans and S. M. Hollenberg, Cell 52:1-3, 1988). The function(s) of the zinc finger and other amino acids in DNA-binding remains unclear. To determine which portion of the LAC9 DNA-binding domain mediates sequence recognition, we replaced the C6 zinc finger, amino acids adjacent to the carboxyl side of the zinc finger, or both with the analogous region from the Saccharomyces cerevisiae PPR1 or LEU3 protein. A chimeric LAC9 protein, LAC9(PPR1 34-61), carrying only the PPR1 zinc finger, retained the DNA-binding specificity of LAC9. However, LAC9(PPR1 34-75), carrying the PPR1 zinc finger and 14 amino acids on the carboxyl side of the zinc finger, gained the DNA-binding specificity of PPR1, indicating that these 14 amino acids are necessary for specific DNA binding. Our data show that C6 fingers can substitute for each other and allow DNA binding, but binding affinity is reduced. Thus, in a qualitative sense C6 fingers perform a similar function(s). However, the high-affinity binding required by natural C6 finger proteins demands a unique C6 finger with a specific amino acid sequence. This requirement may reflect conformational constraints, including interactions between the C6 finger and the carboxyl-adjacent amino acids; alternatively or in addition, it may indicate that unique, nonconserved amino acid residues in zinc fingers make sequence-specifying or stabilizing contacts with DNA.


1994 ◽  
Vol 14 (9) ◽  
pp. 6056-6067
Author(s):  
M Tanaka ◽  
W Herr

The POU domain activator Oct-2 contains an N-terminal glutamine-rich transcriptional activation domain. An 18-amino-acid segment (Q18III) from this region reconstituted a fully functional activation domain when tandemly reiterated and fused to either the Oct-2 or GAL4 DNA-binding domain. A minimal transcriptional activation domain likely requires three tandem Q18III segments, because one or two tandem Q18III segments displayed little activity, whereas three to five tandem segments were active and displayed increasing activity with increasing copy number. As with natural Oct-2 activation domains, in our assay a reiterated activation domain required a second homologous or heterologous activation domain to stimulate transcription effectively when fused to the Oct-2 POU domain. These results suggest that there are different levels of synergy within and among activation domains. Analysis of reiterated activation domains containing mutated Q18III segments revealed that leucines and glutamines, but not serines or threonines, are critical for activity in vivo. Curiously, several reiterated activation domains that were inactive in vivo were active in vitro, suggesting that there are significant functional differences in our in vivo and in vitro assays. Reiteration of a second 18-amino-acid segment from the Oct-2 glutamine-rich activation domain (Q18II) was also active, but its activity was DNA-binding domain specific, because it was active when fused to the GAL4 than to the Oct-2 DNA-binding domain. The ability of separate short peptide segments derived from a single transcriptional activation domain to activate transcription after tandem reiteration emphasizes the flexible and modular nature of a transcriptional activation domain.


Sign in / Sign up

Export Citation Format

Share Document