scholarly journals Conserved DNA binding and self-association domains of the Drosophila zeste protein.

1992 ◽  
Vol 12 (2) ◽  
pp. 598-608 ◽  
Author(s):  
J D Chen ◽  
C S Chan ◽  
V Pirrotta

The zeste gene product is involved in two types of genetic effects dependent on chromosome pairing: transvection and the zeste-white interaction. Comparison of the predicted amino acid sequence with that of the Drosophila virilis gene shows that several blocks of amino acid sequence have been very highly conserved. One of these regions corresponds to the DNA binding domain. Site-directed mutations in this region indicate that a sequence resembling that of the homeodomain DNA recognition helix is essential for DNA binding activity. The integrity of an amphipathic helical region is also essential for binding activity and is likely to be responsible for dimerization of the DNA binding domain. Another very strongly conserved domain of zeste is the C-terminal region, predicted to form a long helical structure with two sets of heptad repeats that constitute two long hydrophobic ridges at opposite ends and on opposite faces of the helix. We show that this domain is responsible for the extensive aggregation properties of zeste that are required for its role in transvection phenomena. A model is proposed according to which the hydrophobic ridges induce the formation of open-ended coiled-coil structures holding together many hundreds of zeste molecules and possibly anchoring these complexes to other nuclear structures.


1992 ◽  
Vol 12 (2) ◽  
pp. 598-608
Author(s):  
J D Chen ◽  
C S Chan ◽  
V Pirrotta

The zeste gene product is involved in two types of genetic effects dependent on chromosome pairing: transvection and the zeste-white interaction. Comparison of the predicted amino acid sequence with that of the Drosophila virilis gene shows that several blocks of amino acid sequence have been very highly conserved. One of these regions corresponds to the DNA binding domain. Site-directed mutations in this region indicate that a sequence resembling that of the homeodomain DNA recognition helix is essential for DNA binding activity. The integrity of an amphipathic helical region is also essential for binding activity and is likely to be responsible for dimerization of the DNA binding domain. Another very strongly conserved domain of zeste is the C-terminal region, predicted to form a long helical structure with two sets of heptad repeats that constitute two long hydrophobic ridges at opposite ends and on opposite faces of the helix. We show that this domain is responsible for the extensive aggregation properties of zeste that are required for its role in transvection phenomena. A model is proposed according to which the hydrophobic ridges induce the formation of open-ended coiled-coil structures holding together many hundreds of zeste molecules and possibly anchoring these complexes to other nuclear structures.



1994 ◽  
Vol 14 (3) ◽  
pp. 1852-1860
Author(s):  
K Nakagomi ◽  
Y Kohwi ◽  
L A Dickinson ◽  
T Kohwi-Shigematsu

The nuclear matrix attachment DNA (MAR) binding protein SATB1 is a sequence context-specific binding protein that binds in the minor groove, making virtually no contact with the DNA bases. The SATB1 binding sites consist of a special AT-rich sequence context in which one strand is well-mixed A's, T's, and C's, excluding G's (ATC sequences), which is typically found in clusters within different MARs. To determine the extent of conservation of the SATB1 gene among different species, we cloned a mouse homolog of the human STAB1 cDNA from a cDNA expression library of the mouse thymus, the tissue in which this protein is predominantly expressed. This mouse cDNA encodes a 764-amino-acid protein with a 98% homology in amino acid sequence to the human SATB1 originally cloned from testis. To characterize the DNA binding domain of this novel class of protein, we used the mouse SATB1 cDNA and delineated a 150-amino-acid polypeptide as the binding domain. This region confers full DNA binding activity, recognizes the specific sequence context, and makes direct contact with DNA at the same nucleotides as the whole protein. This DNA binding domain contains a novel DNA binding motif: when no more than 21 amino acids at either the N- or C-terminal end of the binding domain are deleted, the majority of the DNA binding activity is lost. The concomitant presence of both terminal sequences is mandatory for binding. These two terminal regions consist of hydrophilic amino acids and share homologous sequences that are different from those of any known DNA binding motifs. We propose that the DNA binding region of SATB1 extends its two terminal regions toward DNA to make direct contact with DNA.



1990 ◽  
Vol 10 (9) ◽  
pp. 4778-4787 ◽  
Author(s):  
C Buchman ◽  
P Skroch ◽  
W Dixon ◽  
T D Tullius ◽  
M Karin

CUP2 is a copper-dependent transcriptional activator of the yeast CUP1 metallothionein gene. In the presence of Cu+ and Ag+) ions its DNA-binding domain is thought to fold as a cysteine-coordinated Cu cluster which recognizes the palindromic CUP1 upstream activation sequence (UASc). Using mobility shift, methylation interference, and DNase I and hydroxyl radical footprinting assays, we examined the interaction of wild-type and variant CUP2 proteins produced in Escherichia coli with the UASc. Our results suggest that CUP2 has a complex Cu-coordinated DNA-binding domain containing different parts that function as DNA-binding elements recognizing distinct sequence motifs embedded within the UASc. A single-amino-acid substitution of cysteine 11 with a tyrosine results in decreased Cu binding, apparent inactivation of one of the DNA-binding elements and a dramatic change in the recognition properties of CUP2. This variant protein interacts with only one part of the wild-type site and prefers to bind to a different half-site from the wild-type protein. Although the variant has about 10% of wild-type DNA-binding activity, it appears to be completely incapable of activating transcription.



1994 ◽  
Vol 14 (3) ◽  
pp. 1852-1860 ◽  
Author(s):  
K Nakagomi ◽  
Y Kohwi ◽  
L A Dickinson ◽  
T Kohwi-Shigematsu

The nuclear matrix attachment DNA (MAR) binding protein SATB1 is a sequence context-specific binding protein that binds in the minor groove, making virtually no contact with the DNA bases. The SATB1 binding sites consist of a special AT-rich sequence context in which one strand is well-mixed A's, T's, and C's, excluding G's (ATC sequences), which is typically found in clusters within different MARs. To determine the extent of conservation of the SATB1 gene among different species, we cloned a mouse homolog of the human STAB1 cDNA from a cDNA expression library of the mouse thymus, the tissue in which this protein is predominantly expressed. This mouse cDNA encodes a 764-amino-acid protein with a 98% homology in amino acid sequence to the human SATB1 originally cloned from testis. To characterize the DNA binding domain of this novel class of protein, we used the mouse SATB1 cDNA and delineated a 150-amino-acid polypeptide as the binding domain. This region confers full DNA binding activity, recognizes the specific sequence context, and makes direct contact with DNA at the same nucleotides as the whole protein. This DNA binding domain contains a novel DNA binding motif: when no more than 21 amino acids at either the N- or C-terminal end of the binding domain are deleted, the majority of the DNA binding activity is lost. The concomitant presence of both terminal sequences is mandatory for binding. These two terminal regions consist of hydrophilic amino acids and share homologous sequences that are different from those of any known DNA binding motifs. We propose that the DNA binding region of SATB1 extends its two terminal regions toward DNA to make direct contact with DNA.



1989 ◽  
Vol 9 (5) ◽  
pp. 1987-1995
Author(s):  
A A Amin ◽  
P D Sadowski

We have used an in vitro transcription and translation system to synthesize an enzymatically active FLP protein. The FLP mRNA synthesized in vitro by SP6 polymerase is translated efficiently in a rabbit reticulocyte lysate to produce enzymatically active FLP. Using this system, we assessed the effect of deletions and tetrapeptide insertions on the ability of the respective variant proteins synthesized in vitro to bind to the FLP recognition target site and to carry out excisive recombination. Deletions of as few as six amino acids from either the carboxy- or amino-terminal region of FLP resulted in loss of binding activity. Likewise, insertions at amino acid positions 79, 203, and 286 abolished DNA-binding activity. On the other hand, a protein with an insertion at amino acid 364 retained significant DNA-binding activity but had no detectable recombination activity. Also, an insertion at amino acid 115 had no measurable effect on DNA binding, but recombination was reduced by 95%. In addition, an insertion at amino acid 411 had no effect on DNA binding and recombination. On the basis of these results, we conclude that this approach fails to define a discrete DNA-binding domain. The possible reasons for this result are discussed.



1988 ◽  
Vol 8 (9) ◽  
pp. 3726-3733
Author(s):  
M M Witte ◽  
R C Dickson

LAC9 is a positive regulatory protein that controls transcription of the lactose-galactose regulon in Kluyveromyces lactis. LAC9 is homologous to the GAL4 protein of Saccharomyces cerevisiae. Both proteins have a single "zinc finger" which plays a role in DNA binding. We previously hypothesized (L. V. Wray, M. M. Witte, R. C. Dickson, and M. I. Riley, Mol. Cell. Biol. 7:1111-1121, 1987) that the DNA-binding domain of the LAC9 protein consisted of the zinc finger as well as a region of amino acids on the carboxyl-terminal side of the zinc finger. In this study we used oligonucleotide-directed mutagenesis to introduce 13 single-amino-acid changes into the proposed DNA-binding domain of the LAC9 protein. Variant LAC9 proteins carrying an amino acid substitution in any one of the four highly conserved Cys residues of the zinc finger had reduced DNA-binding activity, suggesting that each Cys is necessary for DNA binding. Three of four variant LAC9 proteins with amino acid substitutions located on the carboxyl-terminal side of the zinc finger had reduced DNA-binding activity. These results support our hypothesis that the DNA-binding domain of the LAC9 protein is composed of the zinc finger and the adjacent region on the carboxyl side of the zinc finger, a region that has the potential to form an alpha-helix. Finally, LAC9 proteins containing His residues substituted for the conserved Cys residues also had reduced DNA-binding activity, indicating that His residues are not equivalent to Cys residues, as had been previously thought.



1993 ◽  
Vol 13 (3) ◽  
pp. 1385-1391
Author(s):  
H Watanabe ◽  
J Sawada ◽  
K Yano ◽  
K Yamaguchi ◽  
M Goto ◽  
...  

E4TF1 was originally identified as one of the transcription factors responsible for adenovirus E4 gene transcription. It is composed of two subunits, a DNA binding protein with a molecular mass of 60 kDa and a 53-kDa transcription-activating protein. Heterodimerization of these two subunits is essential for the protein to function as a transcription factor. In this study, we identified a new E4TF1 subunit, designated E4TF1-47, which has no DNA binding activity but can associate with E4TF1-60. We then cloned the cDNAs for each of the E4TF1 subunits. E4TF1 was purified, and the partial amino acid sequence of each subunit was determined. The predicted amino acid sequence of each cDNA clone revealed that E4TF1-60 had an ETS domain, which is a DNA binding domain common to ets-related transcription factors. E4TF1-53 had four tandemly repeated notch-ankyrin motifs. The putative cDNA of E4TF1-47 coded almost the same amino acid sequences as E4TF1-53. Three hundred and thirty-two amino acids of the N termini of E4TF1-47 and -53 were identical except for one amino acid insertion in E4TF1-53, and they differ from each other at the C terminus. These three recombinant cDNA clones were expressed in Escherichia coli, and the proteins behaved in the same manner as purified proteins in a gel retardation assay. Nucleotide and predicted amino acid sequences were highly homologous to GABP-alpha and -beta, which is further supported by the observation that GABP-specific antibody can recognize human E4TF1.



1989 ◽  
Vol 9 (5) ◽  
pp. 1987-1995 ◽  
Author(s):  
A A Amin ◽  
P D Sadowski

We have used an in vitro transcription and translation system to synthesize an enzymatically active FLP protein. The FLP mRNA synthesized in vitro by SP6 polymerase is translated efficiently in a rabbit reticulocyte lysate to produce enzymatically active FLP. Using this system, we assessed the effect of deletions and tetrapeptide insertions on the ability of the respective variant proteins synthesized in vitro to bind to the FLP recognition target site and to carry out excisive recombination. Deletions of as few as six amino acids from either the carboxy- or amino-terminal region of FLP resulted in loss of binding activity. Likewise, insertions at amino acid positions 79, 203, and 286 abolished DNA-binding activity. On the other hand, a protein with an insertion at amino acid 364 retained significant DNA-binding activity but had no detectable recombination activity. Also, an insertion at amino acid 115 had no measurable effect on DNA binding, but recombination was reduced by 95%. In addition, an insertion at amino acid 411 had no effect on DNA binding and recombination. On the basis of these results, we conclude that this approach fails to define a discrete DNA-binding domain. The possible reasons for this result are discussed.



1991 ◽  
Vol 7 (2) ◽  
pp. 89-96 ◽  
Author(s):  
D. D. Brandon ◽  
A. J. Markwick ◽  
M. Flores ◽  
K. Dixon ◽  
B. D. Albertson ◽  
...  

ABSTRACT The neotropical cotton-top marmoset (Saguinus oedipus) is a New World primate known to have markedly increased total and free plasma cortisol concentrations when compared with Old World primates including man. The relative end-organ 'resistance' to glucocorticoids found in various New World primates has been attributed to a glucocorticoid receptor (GR) with diminished affinity for glucocorticoids. It has been demonstrated that the marmoset GR has approximately tenfold lower binding affinity for dexamethasone when compared with the human GR. We have examined the primary structure of the marmoset GR by molecular cloning and sequencing of GR functional domains. A library of cDNA clones was constructed in the phage vector λgt10 using poly(A)+ RNA from a marmoset-derived lymphoid cell line, and screened using the human GR cDNA. DNA sequencing determined 76 individual nucleotide substitutions in the coding region of the marmoset GR. Comparison of the marmoset GR nucleotide sequence with the human GR cDNA coding region indicated an overall sequence homology of about 97%. Thirty of the nucleotide substitutions lead to alterations in the predicted amino acid sequence (28 amino acid substitutions) of the marmoset GR. The size of the marmoset GR predicted from the 778 amino acids is approximately 90 000 which is in agreement with previous size estimates of the human and marmoset GRs. Alterations of amino acid sequence in the marmoset GR were greatest towards the amino terminus, including the τ1 domain putatively involved in transcriptional activation. The DNA-binding domain contained an additional codon (arginine). Comparison of the DNA-binding domain of the marmoset GR with other members of the steroid receptor superfamily indicates that the additional arginine occurs in the same position as other amino acid insertions within the interfinger region of the human androgen receptor and the erb-A proto-oncogene. There are only four missense substitutions within the steroid-binding domain. Two of these substitutions occur within the transducing site which has been associated with binding of the GR to a 90 kDa heat shock protein. These data suggest that diminished GR affinity for glucocorticoids in the marmoset may be due to alterations in the primary structure of one or more functional domains of the GR gene. In addition, other important regulatory functions, such as transcriptional activation, DNA binding and receptor transduction, may also be affected.



1993 ◽  
Vol 13 (3) ◽  
pp. 1385-1391 ◽  
Author(s):  
H Watanabe ◽  
J Sawada ◽  
K Yano ◽  
K Yamaguchi ◽  
M Goto ◽  
...  

E4TF1 was originally identified as one of the transcription factors responsible for adenovirus E4 gene transcription. It is composed of two subunits, a DNA binding protein with a molecular mass of 60 kDa and a 53-kDa transcription-activating protein. Heterodimerization of these two subunits is essential for the protein to function as a transcription factor. In this study, we identified a new E4TF1 subunit, designated E4TF1-47, which has no DNA binding activity but can associate with E4TF1-60. We then cloned the cDNAs for each of the E4TF1 subunits. E4TF1 was purified, and the partial amino acid sequence of each subunit was determined. The predicted amino acid sequence of each cDNA clone revealed that E4TF1-60 had an ETS domain, which is a DNA binding domain common to ets-related transcription factors. E4TF1-53 had four tandemly repeated notch-ankyrin motifs. The putative cDNA of E4TF1-47 coded almost the same amino acid sequences as E4TF1-53. Three hundred and thirty-two amino acids of the N termini of E4TF1-47 and -53 were identical except for one amino acid insertion in E4TF1-53, and they differ from each other at the C terminus. These three recombinant cDNA clones were expressed in Escherichia coli, and the proteins behaved in the same manner as purified proteins in a gel retardation assay. Nucleotide and predicted amino acid sequences were highly homologous to GABP-alpha and -beta, which is further supported by the observation that GABP-specific antibody can recognize human E4TF1.



Sign in / Sign up

Export Citation Format

Share Document