Journal of Molecular Endocrinology
Latest Publications


TOTAL DOCUMENTS

2534
(FIVE YEARS 193)

H-INDEX

91
(FIVE YEARS 9)

Published By Bioscientifica

1479-6813, 0952-5041

Author(s):  
Wenlong Zhang ◽  
Dewen Tong ◽  
Zelin Zhang ◽  
Jiang Peng ◽  
Sitian Yang ◽  
...  

Effects of melatonin on the release and synthesis of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) at the hypothalamus and pituitary levels have been explored in some species, but a similar study in the corpora lutea (CL) has not yet been conducted. In this study, the immunostaining for GnRH and LH was observed in luteal cells of porcine CL during pregnancy, and a significant effect of pregnant stage on the level of GnRH and LH was found; higher values for GnRH and LH immunostaining and mRNA were detected in the early- and mid- stages CL than in the later-stage CL (P < 0.01). Furthermore, the patterns of melatonin membrane receptors (MT1 and MT2) expression were consistent with those of GnRH and LH expression in the CL of pregnant sows; the relative levels of MT1 and MT2 in the early- and mid- stages were significantly higher than those in the later-stage (P < 0.01). In luteal cells, melatonin dose-dependently increased in GnRH and LH secretion and mRNA expression. Melatonin also increased the GnRH–induced accumulation of LH, and the LH–induced secretion of P4 in luteal cells. Additionally, the effects of melatonin on luteal GnRH and LH production, were blocked by luzindole, a nonselective MT1 and MT2 receptor antagonist. Our results demonstrate the stimulatory effects of melatonin on GnRH and LH production in luteal cells of pregnant sows, suggesting a potential role for melatonin in luteal function through regulating the release and synthesis of GnRH and LH in luteal cells.


Author(s):  
Jiayu Zhang ◽  
Chengwei Chen ◽  
Liang Wu ◽  
Qiang Wang ◽  
Jiawei Chen ◽  
...  

The pro-inflammatory cytokines secreted by Müller cells aggregate retinal cell loss and vascularization in diabetic retinopathy (DR). The deubiquitinase BRCA1-BRCA2-containing complex subunit 3 (BRCC3)-mediated nucleotide-binding domain and leucine-rich repeat receptor containing a pyrin domain 3 (NLRP3) inflammasome activation participates in this progress. This study aims to clarify whether the E3 ubiquitin ligase synoviolin (SYVN1) relieves DR via regulating the BRCC3/NLRP3 axis. The DR model was established using streptozotocin-induced mice. Immunofluorescence staining with anti-CD31, anti-glutamine synthetase, and anti-Vimentin was performed to identify DR and Müller cells. Levels of pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6, and IL-18 in murine serum and Müller cell supernatants were determined. Co-immunoprecipitation (Co-IP) and ubiquitination assays were used to clarify the interactions among SYVN1, BRCC3, and NLRP3. SYVN1 was reduced and BRCC3 was increased in DR retina and high glucose- (HG-) induced Müller cells. Overexpressing SYVN1 promoted the ubiquitination and degradation of BRCC3 and reduced the secretion of pro-inflammatory cytokines in HG-induced Müller cells. The simultaneous overexpression of SYVN1 and BRCC3 restored the reduction of pro-inflammatory cytokines caused by overexpression of SYVN1 alone. Co-IP experiments confirmed the interaction between BRCC3 and NLRP3. SYVN1-mediated BRCC3 down-regulation promoted NLRP3 ubiquitination and reduced pro-inflammatory cytokine secretion. SYVN1 overexpression reduced retinal vascularization and inflammatory cytokine secretion in DR mice. SYVN1 has a protective effect on DR, whose molecular mechanisms are partly through SYVN1-mediated ubiquitination of BRCC3 and the subsequent down-regulation of NLRP3.


Author(s):  
Toshihiro Kobayashi ◽  
Hitomi Imachi ◽  
Kensaku Fukunaga ◽  
Jingya Lyu ◽  
Seisuke Sato ◽  
...  

Adiponectin (APN) is an adipokine that protects against diabetes and atherosclerosis. High-density lipoprotein (HDL) mediates reverse cholesterol transport, which also protects against atherosclerosis. In this process, the human homolog of the B class type I scavenger receptor (SR-BI/CLA-1) facilitates the cellular uptake of cholesterol from HDL. The level of circulating adiponectin is positively correlated with the serum level of HDL-cholesterol. In this study, we investigated whether HDL stimulates the gene expression of adiponectin through the Ca²+/calmodulin (CaM)-dependent protein kinase IV (CaMKIV) cascade. Adiponectin expression was examined using real-time PCR and western blot analysis in 3T3-L1 cells incubated with HDL. CaMKIV activity was assessed by detection of activation loop phosphorylation (at Thr196 residue), and the effect of the constitutively active form, CaMKIVc, on adiponectin promoter activity was investigated. Our results showed that HDL stimulated APN gene expression via hSR-BI/CLA-1. Furthermore, we explored the signaling pathways by which HDL stimulated APN expression in 3T3-L1 cells. The stimulation of APN gene expression by HDL appears to be mediated by CaMKK, as STO-609, a specific inhibitor of CaMKK2, prevents this effect. We revealed that CaMKIVc increased APN gene transcriptional activity, and the CaMKIV dominant negative mutant blocked the effect of HDL on APN promoter activity. Finally, knockdown of hSR-BI/CLA-1 also cancelled the effect of HDL on APN gene expression. These results suggest that HDL has important role to improve the function of adipocytes by activating hSR-BI/CLA-1 and CaMKK/CaMKIV pathway is conceivable as one of the signaling pathways of this activation mechanism.


2021 ◽  
Vol 67 (4) ◽  
pp. 203-215
Author(s):  
Jeff S Chueh ◽  
Kang-Yung Peng ◽  
Vin-Cent Wu ◽  
Shuo-Meng Wang ◽  
Chieh-Kai Chan ◽  
...  

Somatic mutation in the KCNJ5 gene is a common driver of autonomous aldosterone overproduction in aldosterone-producing adenomas (APA). KCNJ5 mutations contribute to a loss of potassium selectivity, and an inward Na+ current could be detected in cells transfected with mutated KCNJ5. Among 223 unilateral primary aldosteronism (uPA) individuals with a KCNJ5 mutation, we identified 6 adenomas with a KCNJ5 p.Gly387Arg (G387R) mutation, previously unreported in uPA patients. The six uPA patients harboring mutant KCNJ5-G387R were older, had a longer hypertensive history, and had milder elevated preoperative plasma aldosterone levels than those APA patients with more frequently detected KCNJ5 mutations. CYP11B2 immunohistochemical staining was only positive in three adenomas, while the other three had co-existing multiple aldosterone-producing micronodules. The bioinformatics analysis predicted that function of the KCNJ5-G387R mutant channel could be pathological. However, the electrophysiological experiment demonstrated that transfected G387R mutant cells did not have an aberrantly stimulated ion current, with lower CYP11B2 synthesis and aldosterone production, when compared to that of the more frequently detected mutant KCNJ5-L168R transfected cells. In conclusion, mutant KCNJ5-G387R is not a functional KCNJ5 mutation in unilateral PA. Compared with other KCNJ5 mutations, the observed mildly elevated aldosterone expression actually hindered the clinical identification of clinical unilateral PA. The KCNJ5-G387R mutation needs to be distinguished from functional KCNJ5 mutations during genomic analysis in APA evaluation because of its functional silence.


Author(s):  
Rachel C Quilang ◽  
Sylvia Lui ◽  
Karen Forbes

Src homology-2 (SH2) domain containing protein tyrosine phosphatase 2 (SHP-2), encoded by the PTPN11 gene, forms a central component of multiple signalling pathways and is required for insulin-like growth factor (IGF) induced placental growth. Altered expression of SHP-2 is associated with aberrant placental and fetal growth indicating that drugs modulating SHP-2 expression may improve adverse pregnancy outcome associated with altered placental growth. Placental PTPN11/SHP-2 expression is controlled by microRNAs (miRNAs) so SHP-2 regulatory miRNAs may have therapeutic potential, however the individual miRNA(s) regulating placental SHP-2 expression remain to be established. We performed in-silico analysis of 3’UTR target prediction databases to identify libraries of HeLa cells transfected with individual miRNA-mimetics, enriched in potential SHP-2 regulatory miRNAs. Analysis of PTPN11 levels by qPCR revealed that miR-758-3p increased, whilst miR-514a-3p reduced PTPN11 expression. miR-514a-3p and miR-758-3p expression within the human placenta was confirmed by qPCR; miR-514a-3p (but not miR-758-3p) levels inversely correlated with PTPN11 expression. To assess the interaction between these miRNAs and PTPN11/SHP-2, specific mimetics were transfected into first trimester human placental explants and explants cultured for up to 4 days. Overexpression of miR-514a-3p, but not miR-758-3p, significantly reduced PTPN11 and SHP-2 expression. microRNA-ribonucleoprotein complex (miRNP)-associated mRNA assays confirmed that this interaction was direct. miR-514a-3p overexpression attenuated IGF-I induced trophoblast proliferation (BrdU incorporation). miR-758-3p did not alter trophoblast proliferation. These data demonstrate that by modulating SHP-2 expression, miR-514a-3p is a novel regulator of IGF- signalling and proliferation in the human placenta and may have therapeutic potential in pregnancies complicated by altered placental growth.


Author(s):  
René Lafont ◽  
Maria Serova ◽  
Blaise Didry-Barca ◽  
Sophie Raynal ◽  
Louis Guibout ◽  
...  

20-Hydroxyecdysone (20E) is a steroid hormone that plays a key role in insect development through nuclear ecdysteroid receptors (EcR/RXR complex) and at least one membrane GPCR receptor (DopEcR). It also displays numerous pharmacological effects in mammals, where its mechanism of action is still debated, involving either an unidentified GPCR or the estrogen ERβ receptor. The goal of this study was to better understand 20E mechanism of action in mammals. A mouse myoblast cell line (C2C12) and the gene expression of myostatin (a negative regulator of muscle growth) was used as a reporter system of anabolic activity. Experiments using protein-bound 20E established the involvement of a membrane receptor. 20E-like effects were also observed with angiotensin-(1-7), the endogenous ligand of Mas. Additionally, the effect on myostatin gene expression was abolished by Mas receptor knock-down using small interfering RNA (siRNA) or pharmacological inhibitors. 17β-Estradiol (E2) also inhibited myostatin gene expression, but protein-bound E2 was inactive, and E2 activity was not abolished by angiotensin-(1-7) antagonists. A mechanism involving cooperation between the Mas receptor and a membrane-bound palmitoylated estrogen receptor is proposed. The possibility to activate the Mas receptor with a safe steroid molecule is consistent with the pleiotropic pharmacological effects of ecdysteroids in mammals and, indeed, the proposed mechanism may explain the close similarity between angiotensin-(1-7)’s and 20E’s effects. Our findings open up many possible therapeutic developments involving stimulation of the protective arm of the renin-angiotensin-aldosterone system (RAAS) with 20E.


Author(s):  
Linfang Li ◽  
Xiaoyi Zhang ◽  
Hangjiang Ren ◽  
Xiuqing Huang ◽  
Tao Shen ◽  
...  

miR-23a-3p and miR-23b-3p are members of the miR-23~27~24-2 superfamily. The role of miR-23a/b-3p in regulating hepatic lipid accumulation is still unknown. Here, we found that increased miR-23a-3p and miR-23b-3p levels were accompanied by an increase in the protein levels of the sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FAS) in the steatotic livers of mice fed a high-fat diet (HFD) and leptin-receptor-deficient type 2 diabetic mice (db/db). Importantly, overexpression of miR-23a/b-3p in Hep1-6 cells elevated the intracellular triglyceride level and upregulated the expression of Srebp-1c and Fas. Taken together, these results suggested that miR-23a/b-3p enhanced mRNA stability by binding the 5'-UTR of Srebp-1c and Fas mRNA, thereby promoting triglyceride accumulation in hepatocytes.


Author(s):  
Qilin Cao ◽  
Yamil Boo Irizarry ◽  
Svetlana Yazhuk ◽  
Thai Tran ◽  
Manasi Gadkari ◽  
...  

Glucocorticoids are the cornerstone of immunosuppressive and anti-inflammatory therapy in humans, yet the mechanisms of glucocorticoid immunoregulation and toxicity remain unclear. The response to glucocorticoids is highly cell type-dependent, so translating results from different experimental systems into a better understanding of glucocorticoid effects in humans would benefit from rapid access to high-quality data on the response to glucocorticoids by different cell types. We introduce GCgx, a web application that allows investigators to quickly visualize changes in transcript abundance in response to glucocorticoids in a variety of cells and species. The tool is designed to grow by addition of datasets based on input from the user community. GCgx is implemented in R and HTML and packaged as a Docker image. The tool and its source code are publicly available.


2021 ◽  
Vol 67 (4) ◽  
pp. 189-201
Author(s):  
Wiktoria Ratajczak ◽  
Sarah D Atkinson ◽  
Catriona Kelly

TNFAIP3 encodes a zinc finger protein called A20, which has potent anti-inflammatory and anti-apoptotic properties. A20 promotes beta-cell survival and protects against islet graft rejection in experimental models. The current study sought to investigate the mechanisms underlying the protective role of A20 in the pancreatic beta-cell. Two islet cell types were used for experiments: the insulin-secreting BRIN-BD11 cell line and human islet cells. A20 was silenced using siRNA against TNFAIP3, and knockdown was confirmed by qPCR and immunostaining of cells. Cell viability, cytotoxicity and apoptosis were assessed using the ApotoxGlo assay. Glucose-stimulated insulin secretion and production of inflammatory cytokines (TNFa, IL1b and IFNg) were measured by ELISA. Expression of beta-cell regulatory genes (Abcc8, Kcnj11, Kcnq1, Gck, Scl2a2) and transcription factors (Hnf1a, Pdx1, Nkx6.1, Ngn3) was determined by qPCR. A20 deficiency increased apoptosis, impaired glucose-induced insulin secretion, and reduced expression of beta-cell regulatory genes and transcription factors. Addition of recombinant A20 normalized gene expression profiles. TNFa, IL1b and IFNg were elevated in A20 deficient cells and found to independently elicit changes in gene expression. Analysis of PCR array data suggests that A20 action in the beta cell is largely, although not exclusively, driven by the P65 subunit of NF-kB. The current report demonstrates a role for A20 in controlling beta-cell integrity and survival, which likely results from the regulation of inflammatory signalling. Of particular note is the impact that A20 deficiency has on the expression of transcription factors regulating the maturation and normal function of beta cells.


Sign in / Sign up

Export Citation Format

Share Document