STIMULATION OF PROSTAGLANDIN ACCUMULATION IN THE RAT ANTERIOR PITUITARY GLAND BY LUTEINIZING HORMONE RELEASING HORMONE IN VITRO

1977 ◽  
Vol 75 (2) ◽  
pp. 277-283 ◽  
Author(s):  
N. BARDEN ◽  
A. BETTERIDGE

The addition of luteinizing hormone releasing hormone (LH-RH) to cultures of monolayers of rat anterior pituitary cells was shown to increase both the concentrations of prostaglandins E1 and E2 (PGE) in the cells and the release of LH over similar ranges of concentrations of LH-RH (10−6 to 10−10 mol/l). The peak concentration of PGE was observed after 2·5 h. The stimulation of the level of PGE in the cells by LH-RH was completely inhibited by two inhibitors of prostaglandin synthetase, which only partially inhibited the stimulation of LH release. Therefore the increased concentration of PGE was not obligatory for the effect of LH-RH on LH release. It was also shown that monobutyryl cyclic AMP stimulated the intracellular concentration of PGE and it is suggested that the stimulation of PGE levels may be mediated by increased levels of cyclic AMP in the cells after the addition of LH-RH.

1983 ◽  
Vol 61 (2) ◽  
pp. 186-189 ◽  
Author(s):  
Noboru Fujihara ◽  
Masataka Shiino

The effect of thyrotrophin-releasing hormone (TRH, 10−7 M) on luteinizing hormone (LH) release from rat anterior pituitary cells was examined using organ and primary cell culture. The addition of TRH to the culture medium resulted in a slightly enhanced release of LH from the cultured pituitary tissues. However, the amount of LH release stimulated by TRH was not greater than that produced by luteinizing hormone – releasing hormone (LH–RH, 10−7 M). Actinomycin D (2 × 10−5 M) and cycloheximide (10−4 M) had an inhibitory effect on the action of TRH on LH release. The inability of TRH to elicit gonadotrophin release from the anterior pituitary glands in vivo may partly be due to physiological inhibition of its action by other hypothalamic factor(s).


1981 ◽  
Vol 90 (3) ◽  
pp. 433-436 ◽  
Author(s):  
S. FRANKS ◽  
G. R. MERRIAM ◽  
CYNTHIA G. GOODYER ◽  
F. NAFTOLIN

We have examined the effects of the catechol oestrogens 2-hydroxyoestradiol (2-OHE2), 4-hydroxyoestradiol (4-OHE2) and 2-hydroxyoestrone (2-OHE1) and their corresponding primary oestrogens on secretion of LH and FSH by enzymatically dispersed rat anterior pituitary cells in monolayer culture. Basal LH levels in the medium were significantly higher than in control wells when cells were exposed to 10−8m-oestradiol-17β for 40 h: oestrone and all three catechol oestrogens (in the same doses) also stimulated basal LH concentrations to levels quantitatively similar to those seen after oestradiol treatment. The same effects were observed when steroids were given at 10−9 mol/l. Oestradiol, 2-OHE2, and 4-OHE2 but not 2-OHE1 increased pituitary responsiveness to LH releasing hormone (LH-RH) (given in a range of doses from 10−11 to 10−6 mol/l). The responses of cells treated with 2-OHE2 and 4-OHE2 were similar, though less than the response seen after treatment with oestradiol. This contrasts with the very different oestrogenic effects of 2- and 4-OHE2 previously observed in vivo. Neither oestradiol nor the catechol oestrogens had any effect on basal or LH-RH-stimulated FSH release.


1979 ◽  
Vol 57 (12) ◽  
pp. 1388-1392 ◽  
Author(s):  
M. Fevre ◽  
D. Jordan ◽  
J. Tourniaire ◽  
R. Mornex

The mechanism of action of adiphenine on in vitro rat anterior pituitary LH release was studied and compared with that of the physiological stimulator luteinizing hormone releasing hormone (LH-RH) on LH release. The comparative study showed that adiphenine and LH-RH were able to increase medium LH concentration in a dose-dependent manner and had similar time courses of action between 1 and 4 h incubation. However, there were several main differences between the effects of adiphenine and LH-RH. The adiphenine action was not calcium dependent, was inhibited in a high K+ medium concentration, and was substituted after energy depression. It is concluded that adiphenine probably acts near the ultimate steps of the LH release pathway and could be a useful pharmacological tool for studying the mechanism of LH release.


1979 ◽  
Vol 80 (1) ◽  
pp. 141-152 ◽  
Author(s):  
A. D. SWIFT ◽  
D. B. CRIGHTON

The abilities of three nonapeptide analogues of synthetic luteinizing hormone releasing hormone (LH-RH) to release luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in anoestrous and cyclic ewes were examined, as were their elimination from the plasma in vivo and degradation by extracts of the hypothalamus, anterior pituitary gland, lung, kidney, liver and plasma in vitro. In all cases, comparisons were made with synthetic LH-RH. When injected i.v. into mature ewes as a single dose, the potencies of the analogues were graded and Des Gly-NH210 LH-RH ethylamide was found to be the least potent. It was not possible to demonstrate any significant increase in the potency of this analogue over LH-RH, although a trend was apparent with each parameter examined. [d-Ser(But)6] Des Gly-NH210 LH-RH ethylamide had the greatest potency. There were no differences between the responses of anoestrous ewes and those of ewes treated on day 10 of the oestrous cycle. None of the analogues had a rate of elimination from the plasma different from that of LH-RH during either the first or the second components of the biphasic disappearance curve. The incubation of LH-RH with tissue extracts showed that extracts of the hypothalamus and anterior pituitary gland degraded LH-RH to a similar extent. Both the hypothalamic and anterior pituitary gland extracts degraded more LH-RH than did lung extract, which in turn destroyed more LH-RH than did extracts of kidney or liver tissue. The degradative abilities of kidney and liver extracts did not differ from each other. Plasma failed to degrade LH-RH or the analogues. Although LH-RH was rapidly destroyed by hypothalamic extract in vitro, of the analogues, only Des Gly-NH210 LH-RH ethylamide was degraded. The anterior pituitary gland and kidney extracts failed to degrade [d-Ser6] Des Gly-NH210 LH-RH ethylamide and [d-Ser(But)6] Des Gly-NH210 LH-RH ethylamide as rapidly as LH-RH. Extracts of liver and lung were incapable of catabolizing any of the analogues. There was an inverse correlation between the LH- and FSH-releasing potency of an analogue and its rate of degradation by anterior pituitary gland extract. The slower rates of catabolism of certain analogues of LH-RH by the anterior pituitary gland may explain their increased LH- and FSH-releasing potency.


1978 ◽  
Vol 76 (2) ◽  
pp. 367-368 ◽  
Author(s):  
G. L. RIGLER ◽  
G. T. PEAKE ◽  
A. RATNER

Departments of Physiology and Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, U.S.A. (Received 19 August 1977) Cyclic AMP has been increasingly implicated as an important intracellular mediator regulating the secretion of peptide hormones (Vale, Grant & Guillemin, 1973), but there is controversy concerning its role in the regulation of the luteinizing hormone releasing hormone (LH-RH)-stimulated secretion of luteinizing hormone (LH; Labrie, Pelletier, Borgeat, Drouin, Ferland & Belanger, 1976; Ratner, Wilson, Srivastava & Peake, 1976; Sundberg, Fawcett & McCann, 1976). Although less clearly established, the guanyl cyclase–cyclic GMP system may also play an important role in regulating cellular events (Goldberg, O'Dea & Haddox, 1973). Studies with a highly purified growth hormone (GH) releasing factor suggested the involvement of cyclic GMP in the mediation of GH release from the somatotrope (Wilson, Steiner, Dhariwal & Peake, 1974). This communication describes studies which suggest a role for the guanylate


Sign in / Sign up

Export Citation Format

Share Document