scholarly journals Islet constitutive nitric oxide synthase and glucose regulation of insulin release in mice

1999 ◽  
Vol 163 (1) ◽  
pp. 39-48 ◽  
Author(s):  
B Akesson ◽  
R Henningsson ◽  
A Salehi ◽  
I Lundquist

We have studied, by a combined in vitro and in vivo approach, the relation between the inhibitory action of N(G)-nitro-l-arginine methyl ester (L-NAME), a selective inhibitor of nitric oxide synthase (NOS), on the activity of islet constitutive NOS (cNOS) and glucose regulation of islet hormone release in mice. The cNOS activity in islets incubated in vitro at 20 mM glucose was not appreciably affected by 0.05 or 0.5 mM L-NAME, but was greatly suppressed (-60%) by 5 mM L-NAME. Similarly, glucose-stimulated insulin release was unaffected by the lower concentrations of L-NAME but greatly enhanced in the presence of 5 mM of the NOS inhibitor. In incubated islets inhibition of cNOS activity resulted in a modestly enhanced insulin release in the absence of glucose, did not display any effect at physiological or subphysiological glucose concentrations, but resulted in a markedly potentiated insulin release at hyperglycaemic glucose concentrations. In the absence of glucose, glucagon secretion was suppressed by L-NAME. The dynamics of glucose-induced insulin release and (45)Ca(2+) efflux from perifused islets revealed that L-NAME caused an immediate potentiation of insulin release, and a slight increase in (45)Ca(2+) efflux. In islets depolarized with 30 mM K(+) in the presence of the K(+)(ATP) channel opener, diazoxide, L-NAME still greatly potentiated glucose-induced insulin release. Finally, an i.v. injection of glucose to mice pretreated with L-NAME was followed by a markedly potentiated insulin response, and an improved glucose tolerance. In accordance, islets isolated directly ex vivo after L-NAME injection displayed a markedly reduced cNOS activity. In conclusion, we have shown here, for the first time, that biochemically verified suppression of islet cNOS activity, induced by the NOS inhibitor L-NAME, is accompanied by a marked potentiation of glucose-stimulated insulin release both in vitro and in vivo. The major action of NO to inhibit glucose-induced insulin release is probably not primarily linked to changes in Ca(2+) fluxes and is exerted mainly independently of membrane depolarization events.

2001 ◽  
Vol 280 (5) ◽  
pp. C1242-C1254 ◽  
Author(s):  
Ragnar Henningsson ◽  
Per Alm ◽  
Ingmar Lundquist

We investigated, by a combined in vivo and in vitro approach, the temporal changes of islet nitric oxide synthase (NOS)-derived nitric oxide (NO) and heme oxygenase (HO)-derived carbon monoxide (CO) production in relation to insulin and glucagon secretion during acute endotoxemia induced by lipopolysaccharide (LPS) in mice. Basal plasma glucagon, islet cAMP and cGMP content after in vitro incubation, the insulin response to glucose in vivo and in vitro, and the insulin and glucagon responses to the adenylate cyclase activator forskolin were greatly increased after LPS. Immunoblots demonstrated expression of inducible NOS (iNOS), inducible HO (HO-1), and an increased expression of constitutive HO (HO-2) in islet tissue. Immunocytochemistry revealed a marked expression of iNOS in many β-cells, but only in single α-cells after LPS. Moreover, biochemical analysis showed a time dependent and markedly increased production of NO and CO in these islets. Addition of a NOS inhibitor to such islets evoked a marked potentiation of glucose-stimulated insulin release. Finally, after incubation in vitro, a marked suppression of NO production by both exogenous CO and glucagon was observed in control islets. This effect occurred independently of a concomitant inhibition of guanylyl cyclase. We suggest that the impairing effect of increased production of islet NO on insulin secretion during acute endotoxemia is antagonized by increased activities of the islet cAMP and HO-CO systems, constituting important compensatory mechanisms against the noxious and diabetogenic actions of NO in endocrine pancreas.


2011 ◽  
Vol 301 (3) ◽  
pp. H721-H729 ◽  
Author(s):  
Katsuhiko Noguchi ◽  
Naobumi Hamadate ◽  
Toshihiro Matsuzaki ◽  
Mayuko Sakanashi ◽  
Junko Nakasone ◽  
...  

An elevation of oxidized forms of tetrahydrobiopterin (BH4), especially dihydrobiopterin (BH2), has been reported in the setting of oxidative stress, such as arteriosclerotic/atherosclerotic disorders, where endothelial nitric oxide synthase (eNOS) is dysfunctional, but the role of BH2 in the regulation of eNOS activity in vivo remains to be evaluated. This study was designed to clarify whether increasing BH2 concentration causes endothelial dysfunction in rats. To increase vascular BH2 levels, the BH2 precursor sepiapterin (SEP) was intravenously given after the administration of the specific dihydrofolate reductase inhibitor methotrexate (MTX) to block intracellular conversion of BH2 to BH4. MTX/SEP treatment did not significantly affect aortic BH4 levels compared with control treatment. However, MTX/SEP treatment markedly augmented aortic BH2 levels (291.1 ± 29.2 vs. 33.4 ± 6.4 pmol/g, P < 0.01) in association with moderate hypertension. Treatment with MTX alone did not significantly alter blood pressure or BH4 levels but decreased the BH4-to-BH2 ratio. Treatment with MTX/SEP, but not with MTX alone, impaired ACh-induced vasodilator and depressor responses compared with the control treatment (both P < 0.05) and also aggravated ACh-induced endothelium-dependent relaxations ( P < 0.05) of isolated aortas without affecting sodium nitroprusside-induced endothelium-independent relaxations. Importantly, MTX/SEP treatment significantly enhanced aortic superoxide production, which was diminished by NOS inhibitor treatment, and the impaired ACh-induced relaxations were reversed with SOD ( P < 0.05), suggesting the involvement of eNOS uncoupling. These results indicate, for the first time, that increasing BH2 causes eNOS dysfunction in vivo even in the absence of BH4 deficiency, demonstrating a novel insight into the regulation of endothelial function.


2015 ◽  
Vol 118 (9) ◽  
pp. 1113-1121 ◽  
Author(s):  
Yet Hoi Hong ◽  
Tony Frugier ◽  
Xinmei Zhang ◽  
Robyn M. Murphy ◽  
Gordon S. Lynch ◽  
...  

Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ−/−and nNOSμ+/+mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor NG-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ−/−and nNOSμ+/+mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (∼4%) were detected in muscles from nNOSμ−/−mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.


Alcohol ◽  
1994 ◽  
Vol 11 (6) ◽  
pp. 539-547 ◽  
Author(s):  
Stanley S. Greenberg ◽  
Jianming Xie ◽  
Ye Wang ◽  
Jay Kolls ◽  
Tadeus Malinski ◽  
...  

1990 ◽  
Vol 101 (3) ◽  
pp. 746-752 ◽  
Author(s):  
D.D. Rees ◽  
R.M.J. Palmer ◽  
R. Schulz ◽  
H.F. Hodson ◽  
S. Moncada

1996 ◽  
Vol 108 (supplement) ◽  
pp. 115-120
Author(s):  
Yoshihisa KITAMURA ◽  
Hideaki TAKAHASHI ◽  
Yasuji MATSUOKA ◽  
Yasuyuki NOMURA ◽  
Takashi TANIGUCHI

2017 ◽  
Vol 312 (4) ◽  
pp. H854-H866 ◽  
Author(s):  
Jaimit Parikh ◽  
Adam Kapela ◽  
Nikolaos M. Tsoukias

We used mathematical modeling to investigate nitric oxide (NO)-dependent vasodilatory signaling in the arteriolar wall. Detailed continuum cellular models of calcium (Ca2+) dynamics and membrane electrophysiology in smooth muscle and endothelial cells (EC) were coupled with models of NO signaling and biotransport in an arteriole. We used this theoretical approach to examine the role of endothelial hemoglobin-α (Hbα) as a modulator of NO-mediated myoendothelial feedback, as previously suggested in Straub et al. ( Nature 491: 473–477, 2012). The model considers enriched expression of inositol 1,4,5-triphosphate receptors (IP3Rs), endothelial nitric oxide synthase (eNOS) enzyme, Ca2+-activated potassium (KCa) channels and Hbα in myoendothelial projections (MPs) between the two cell layers. The model suggests that NO-mediated myoendothelial feedback is plausible if a significant percentage of eNOS is localized within or near the myoendothelial projection. Model results show that the ability of Hbα to regulate the myoendothelial feedback is conditional to its colocalization with eNOS near MPs at concentrations in the high nanomolar range (>0.2 μM or 24,000 molecules). Simulations also show that the effect of Hbα observed in in vitro experimental studies may overestimate its contribution in vivo, in the presence of blood perfusion. Thus, additional experimentation is required to quantify the presence and spatial distribution of Hbα in the EC, as well as to test that the strong effect of Hbα on NO signaling seen in vitro, translates also into a physiologically relevant response in vivo. NEW & NOTEWORTHY Mathematical modeling shows that although regulation of nitric oxide signaling by hemoglobin-α (Hbα) is plausible, it is conditional to its presence in significant concentrations colocalized with endothelial nitric oxide synthase in myoendothelial projections. Additional experimentation is required to test that the strong effect of Hbα seen in vitro translates into a physiologically relevant response in vivo


Sign in / Sign up

Export Citation Format

Share Document