Closed-form solution for plastic zone formation around a circular tunnel in half-space obeying Mohr–Coulomb criterion

Géotechnique ◽  
2009 ◽  
Vol 59 (8) ◽  
pp. 691-701 ◽  
Author(s):  
S.A. MASSINAS ◽  
M.G. SAKELLARIOU
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Liang Cheng ◽  
Yidong Zhang

Instability of coal wall is one of the hot-button and difficult issues in the study of coal mine ground control. The shallow side coal of roadway in the coal measures is usually weak and consequently easy to bring about failure. Hence, the side abutment pressure redistributes and dramatically influences the roadway stability. Since the previous closed-form solutions of the side abutment pressure do not take into account all the necessary parameters which include the properties of the coal and the interface between coal and roof/floor, the roadway height, and the support strength, a mechanical model is established based on the equilibrium of the plastic zone, and a new closed-form solution is derived in this paper. Moreover, a numerical investigation is conducted to validate the accuracy of the closed-form solution. The numerical results of the side abutment pressure distribution are in good agreement with the closed-form solution. Afterwards, a parametric analysis of the width of the plastic zone is carried out, and the results show that the width of the plastic zone is nearly negatively linearly correlated with the friction angle and the cohesion of the coal, the interfacial cohesion, and the support strength. By contrast, it is positively linearly correlated with the roadway height and negatively exponentially correlated with the interfacial friction angle. The results obtained in the present study could be useful for the evaluation process of roadway stability.


2020 ◽  
Vol 224 (1) ◽  
pp. 517-532
Author(s):  
Xi Feng ◽  
Haiming Zhang

SUMMARY In this paper, we derive the exact closed-form solution for the displacement in the interior of an elastic half-space due to a buried point force with Heaviside step function time history. It is referred to as the tensor Green’s function for the elastic wave equation in a uniform half-space, also a natural generalization of the classical 3-D Lamb’s problem, for which previous solutions have been restricted to the cases of either the source or the receiver or both are located on the free surface. Starting from the complex integral solutions of Johnson, we follow the similar procedures presented by Feng and Zhang to obtain the closed-form expressions in terms of elementary functions as well as elliptic integrals. Numerical results obtained from our closed-form expressions agree perfectly with those of Johnson, which validates our explicit formulae conclusively.


Sign in / Sign up

Export Citation Format

Share Document