abutment pressure
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 41)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhiyong Ma ◽  
Wenkai Feng ◽  
Zhen Wang ◽  
Fujin Lin ◽  
Dayong Li

A rock burst accident occurred on coalface 13230 of the Gengcun Coal Mine in Henan Province. Through a field investigation, theoretical analysis, and microseismic monitoring, we studied how the rock burst, which was caused by overall seam floor slip and instability, occurring under an ultrathick conglomerate. Because the overlying ultrathick conglomerate in the mined-out zone close to coalface 13230 had been inadequately mined, the leading section of the coalface was under a high level of stress. Combined with the tectonic stresses from the F16 faultage and the soft floor structure, these factors caused the floor of this coalface to trigger the overall slip-type rock burst. In this paper, an estimation model of the ultimate bearing capacity of a seam floor under an ultrathick conglomerate and the advancing abutment pressure on the coalface is presented. This model is used to show that the ultimate bearing capacity of the seam floor on coalface 13230 is 26.3 MPa, and the abutment pressure is far more than the floor bearing capacity. We also present pressure relief and reinforced supporting measures, which can effectively prevent floor slip-type rock bursts from occurring. The results of this study provide a reference for the prevention and control of floor slip-type rock bursts in coal mining under an ultrathick conglomerate.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yongqiang Zhao ◽  
Yingming Yang ◽  
Xiaobin Li ◽  
Zhiqi Wang

Taken overlying strata of fully mechanized top coal caving mining (FMTCCM) in 15 m extra thick coal seam as the research object, the comprehensive research methods such as field investigation, theoretical calculation, and numerical analysis are used to systematically analyze. During the mining of extra thick coal seam, the overlying strata form the structure of lower cantilever beam and upper hinged rock beam. The downward transmission caused by the interaction of this combined structure is the fundamental reason for the strong periodic ground pressure behavior of working face and roadway blow. The movement process of overlying strata movement is divided into four stages, and dynamic distribution characteristics of lateral abutment pressure in different stages are obtained. It is considered that the gob side roadway can be in a relatively stable overburden structure and stress environment during the stable stage of abutment pressure. The distribution range of the internal and external stress fields is determined, which provides a theoretical basis for the reasonable roadway layout. At last, the fracture position and abutment pressure evolution process of overlying strata along the goaf side of the extra thick coal seam are further verified by drilling stress measurement.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Weibin Guo ◽  
Shengwei Zhang ◽  
Yuhui Li

Coal wall spalling is regarded as a key technical problem influencing safe and efficient mining of large-mining-height working faces while the distribution of abutment pressure within the limit equilibrium zone (LEZ) influences coal wall spalling within a large-mining-height working face. This research attempted to explore the distribution characteristics of abutment pressure within the LEZ in a large-mining-height working face. For this purpose, the influences of the orientation of joints on mechanical characteristics of coal with joints and on the distribution of abutment pressure within the LEZ in the large-mining-height working face were analysed by theoretical analysis and numerical simulation. Research results show that the damage variable of coal with joints first rises, then decreases, and finally increases with increasing dip angle of the joints; as the azimuth of the joints increases, the damage variable first declines, then increases; the damage variable gradually declines with increasing joint spacing; an increase in the dip angle of joints corresponds to first reduction, then growth, and a final decrease of the abutment pressure at the same position in front of the coal walls; on certain conditions, the abutment pressure at the same position within the LEZ first rises, then declines as the azimuth of joints increases; with the growth of the joint spacing, the abutment pressure at the same position within the LEZ rises. The dip angle and azimuth of joints marginally affect the abutment pressure within the LEZ.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jian Hao ◽  
Hua Bian ◽  
Yongkui Shi ◽  
Anfa Chen ◽  
Jiankang Liu ◽  
...  

Borehole pressure relief technology is an effective way to reduce the elastic energy in the surrounding rock of deep roadways, thereby reducing the risk of regional rock bursts. To avoid large deformation of the roadway caused by pressure relief holes with large diameters and insufficient pressure relief with small pore diameters, this study proposes precise pressure relief holes with nonequal diameters in order to achieve strong pressure relief with minimal disturbance based on the abutment pressure distribution pattern. To verify the pressure relief effect of the nonequal diameter holes, numerical simulations were performed in FLAC3D. This study investigated stress field, deformation laws, and plastic failure zone of roadway surrounding rock with 100 mm pressure relief holes, nonequal diameter precision pressure relief hole (100 mm + 300 mm), and 300 mm pressure relief holes. The simulation results show that, as the diameter of the pressure relief hole increases, the coupling effect of evenly spaced adjacent pressure relief holes is strengthened, thus improving the pressure relief efficiency. When pressure relief holes of nonequal diameter are adopted, the stress environment of the surrounding rock is clearly improved compared to100 mm pressure relief holes, and the plastic failure range increased by 2-3 times. The roof-to-floor convergence with nonequal diameter is 30.8% that of 300 mm pressure relief holes and 41% that of 100 mm pressure relief holes. Furthermore, the rib displacement is 30.4% and 46.9% that of 300 mm and 100 mm pressure relief holes, respectively. Thus, precise pressure relief holes with nonequal diameter provide both strong pressure relief associated with large diameter holes and small disturbance of small diameter of small holes. This study provides a reference for precise pressure relief application with pressure relief holes.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Feng Wang ◽  
Zeqi Jie ◽  
Bo Ma ◽  
Weihao Zhu ◽  
Tong Chen

Pressure-relief coal mining provides an effective way to decrease stress concentration in deep mining and ensures mining safety. However, there is currently a lack of research and field verification on the pressure-relief efficiency and influencing factors during upper seam extraction on the lower seam. In order to make up for this deficiency, in this study, field measurements were conducted in panel Y485, which has a maximum depth of 1030 m and is partially under the goaf of the upper 5# seam in the Tangshan coal mine, China, and evolution of advanced abutment pressure was analyzed. Numerical simulations were conducted to study of influence of key strata on advanced abutment pressure. Influence mechanisms of the upper seam extraction on the advanced abutment pressure distribution during lower seam extraction were revealed. The results indicate that the distribution of advanced abutment stress is influenced by the key strata in the overlying strata. The key strata above the upper coal seam were fractured due to the upper coal seam mining, and the advanced abutment stress was only influenced by the key strata between the two seams during lower coal seam mining. When key strata were present between two seams, the extraction of the lower seam still faces potential dynamic disasters after the extraction of the upper seam. In this case, it would be necessary to fracture the key strata between the two seams in advance for the purpose of mining safety. Key strata in the overlying strata of the 5# seam were fractured during extraction, and advanced abutment pressure was only influenced by the key strata located between the two mined seams. The influence distance of advanced abutment pressure in panel Y485 decreased from 73 m to 38 m, and the distance between the peak advanced abutment pressure and the panel decreased from 29 m to 20.5 m, achieving a pronounced pressure-relief effect.


2021 ◽  
Vol 11 (20) ◽  
pp. 9467
Author(s):  
Jian Tan ◽  
Yunliang Tan ◽  
Zihui Wang ◽  
Yubao Zhang

The concentration of abutment pressure acting on coal seams induced by mining is a key factor to trigger rock burst. Understanding of abutment pressure or stress concentration is fundamental in preventing and controlling rock burst. The influence on abutment pressure fluctuation caused by the inhomogeneity of coal seams needs to be considered, but it is difficult to obtain by the present usual ways such as acoustic transmission, electromagnetic wave transmission, etc. In this article, the relationship between the amount of cuttings drilled in a coal seam and stress level was analyzed by considering the effect of drilling cutting expansion, and the drilling cutting test was carried out in Xinglongzhuang Coal Mine, Shandong Energy Ltd. It is found that the amount of cuttings drilled is positively related to the degree of stress concentration in both the plastic fracture zone and elastic zone. The amount of drilling cuttings is closely related to the roof weighting. In addition, the irregular fluctuation of drilling cuttings is an approximate map of distribution of stress concentration because of the non-uniformity of cracks and other defects in the coal seam. In order to meet the need of rock burst prevention by accurate pressure relief in high-stress zones, enough boreholes are needed.


2021 ◽  
pp. 014459872110427
Author(s):  
Feng Wang ◽  
Tong Chen ◽  
Bo Ma ◽  
Denghong Chen

The traditional stress arch hypothesis during longwall mining fails to elucidate the formation mechanism of stress arch, and the morphological characteristics and evolution of stress arch are indefinite. To solve these problems, a mechanical model was established for elucidating the formation mechanism of stress arch in overlaying strata. The influencing of key strata on the morphological characteristics of the stress arch was studied. Finally, the evolution of the stress arch during longwall mining was studied through numerical simulation. The results show that the bearing structure of the overlying strata served as the key strata, and the stress arch was formed when the key strata were subjected to deflection after playing a bearing structure role. This was the result of coordination and redistribution of major principal stress in the key strata. The morphological characteristics of the stress arch changed accordingly with the change in key strata. When the thickness of key strata and the distance between key strata and coal seam were gradually increased, the height and width of the stress arch increased accordingly; however, its height was always terminated at the top interface of key strata. At this time, the peak value of the abutment pressure of the working face gradually decreased while the influencing range gradually increased. During longwall mining, the stress arch developed upward by leaps and bounds with the bearing and fracture of key strata. When the overlying key strata were completely fractured, the stress arch disappeared. The results were verified using the field measurement data on the abutment pressure of the Y485 longwall face in Tangshan Mine.


2021 ◽  
Vol 861 (4) ◽  
pp. 042051
Author(s):  
Wengang Du ◽  
Jing Chai ◽  
Dingding Zhang ◽  
Zhe Ma ◽  
Yongliang Liu

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Guangyuan Yu ◽  
Jiong Wang ◽  
Zimin Ma ◽  
Wei Ming ◽  
Xingen Ma

To control rockbursts in mining roadways in ultrathick coal seams, a new method for preventing rockbursts through dual pressure relief by roof cutting through cumulative blasting in medium-deep boreholes from the conveyor gateway and return airway was proposed. The mechanical characteristics of key overlying strata of the working face under the effect of dual pressure relief were theoretically investigated. Furthermore, a mathematical relationship between the roof-cutting depth and the advanced abutment pressure on the working face was established to reveal the mechanism of dual pressure relief in controlling rockbursts. Moreover, the effect of the dual pressure relief method on controlling rockbursts was validated through numerical simulation and field testing. Results showed that artificially increasing the caving height of gangues in goaf based on the dual pressure relief method can restrict the subsidence of key strata, thus reducing the advanced abutment pressure of the working face; the method influences a range of 20 m in front of the working face along the strike and areas 30 m away from the two roadways along the dip. The average energy density of coal in the side of the conveyor gateway is decreased by 15.4%, while that in the side of return airway is reduced by 13.8% within the range of influence. The field test results indicated that the average pressure on support declines by 21.4% within 30 m from the working face to the conveyor gateway, while it decreases by 20.5% within that region 25 m from the return airway by using the dual pressure relief method. After conducting dual pressure relief, the total number of microseismic (MS) events during mining of the working face is decreased by 25.4%. The number of MS events with energy release exceeding 103 J falls by 36.6%, while the number of events releasing less than 103 J is increased by 28.6%. The characteristics of MS energy release change from coexistence of low-energy events and a small number of high-energy events to the occurrence of numerous low-energy events. Results can verify the effectiveness of the dual pressure relief method in controlling rockbursts in the mining roadway of ultrathick coal seams.


Author(s):  
Rui Wu ◽  
Penghui Zhang ◽  
Pinnaduwa H. S. W. Kulatilake ◽  
Hao Luo ◽  
Qingyuan He

AbstractAt present, non-pillar entry protection in longwall mining is mainly achieved through either the gob-side entry retaining (GER) procedure or the gob-side entry driving (GED) procedure. The GER procedure leads to difficulties in maintaining the roadway in mining both the previous and current panels. A narrow coal pillar about 5–7 m must be left in the GED procedure; therefore, it causes permanent loss of some coal. The gob-side pre-backfill driving (GPD) procedure effectively removes the wasting of coal resources that exists in the GED procedure and finds an alternative way to handle the roadway maintenance problem that exists in the GER procedure. The FLAC3D software was used to numerically investigate the stress and deformation distributions and failure of the rock mass surrounding the previous and current panel roadways during each stage of the GPD procedure which requires "twice excavation and mining". The results show that the stress distribution is slightly asymmetric around the previous panel roadway after the “primary excavation”. The stronger and stiffer backfill compared to the coal turned out to be the main bearing body of the previous panel roadway during the "primary mining". The highest vertical stresses of 32.6 and 23.1 MPa, compared to the in-situ stress of 10.5 MPa, appeared in the backfill wall and coal seam, respectively. After the "primary mining", the peak vertical stress under the coal seam at the floor level was slightly higher (18.1 MPa) than that under the backfill (17.8 MPa). After the "secondary excavation", the peak vertical stress under the coal seam at the floor level was slightly lower (18.7 MPa) than that under the backfill (19.8 MPa); the maximum floor heave and maximum roof sag of the current panel roadway were 252.9 and 322.1 mm, respectively. During the "secondary mining", the stress distribution in the rock mass surrounding the current panel roadway was mainly affected by the superposition of the front abutment pressure from the current panel and the side abutment pressure from the previous panel. The floor heave of the current panel roadway reached a maximum of 321.8 mm at 5 m ahead of the working face; the roof sag increased to 828.4 mm at the working face. The peak abutment pressure appeared alternately in the backfill and the coal seam during the whole procedure of "twice excavation and mining" of the GPD procedure. The backfill provided strong bearing capacity during all stages of the GPD procedure and exhibited reliable support for the roadway. The results provide scientific insight for engineering practice of the GPD procedure.


Sign in / Sign up

Export Citation Format

Share Document