An optimized complex-image prediction model for a closed-form solution of vertical antennas above a dielectric half-space

Author(s):  
R. M. Shubair
2020 ◽  
Vol 224 (1) ◽  
pp. 517-532
Author(s):  
Xi Feng ◽  
Haiming Zhang

SUMMARY In this paper, we derive the exact closed-form solution for the displacement in the interior of an elastic half-space due to a buried point force with Heaviside step function time history. It is referred to as the tensor Green’s function for the elastic wave equation in a uniform half-space, also a natural generalization of the classical 3-D Lamb’s problem, for which previous solutions have been restricted to the cases of either the source or the receiver or both are located on the free surface. Starting from the complex integral solutions of Johnson, we follow the similar procedures presented by Feng and Zhang to obtain the closed-form expressions in terms of elementary functions as well as elliptic integrals. Numerical results obtained from our closed-form expressions agree perfectly with those of Johnson, which validates our explicit formulae conclusively.


Ultrasonics ◽  
2019 ◽  
Vol 96 ◽  
pp. 40-47 ◽  
Author(s):  
Haidang Phan ◽  
Younho Cho ◽  
Quang Hung Le ◽  
Chi Vinh Pham ◽  
Hoai T.-L. Nguyen ◽  
...  

2013 ◽  
Vol 81 (4) ◽  
Author(s):  
X.-L. Gao ◽  
C. L. Mao

The contact problem of a rigid conical frustum indenting a transversely isotropic elastic half-space is analytically solved using a displacement method and a stress method, respectively. The displacement method makes use of two potential functions, while the stress method employs one potential function. In both the methods, Hankel's transforms are applied to construct potential functions, and the associated dual integral equations of Titchmarsh's type are analytically solved. The solution obtained using each method gives analytical expressions of the stress and displacement components on the surface of the half-space. These two sets of expressions are seen to be equivalent, thereby confirming the uniqueness of the elasticity solution. The newly derived solution is reduced to the closed-form solution for the contact problem of a conical punch indenting a transversely isotropic elastic half-space. In addition, the closed-form solution for the problem of a flat-end cylindrical indenter punching a transversely isotropic elastic half-space is obtained as a special case. To illustrate the new solution, numerical results are provided for different half-space materials and punch parameters and are compared to those based on the two specific solutions for the conical and cylindrical indentation problems. It is found that the indentation deformation increases with the decrease of the cone angle of the frustum indenter. Moreover, the largest deformation in the half-space is seen to be induced by a conical indenter, followed by a cylindrical indenter and then by a frustum indenter. In addition, the axial force–indentation depth relation is shown to be linear for the frustum indentation, which is similar to that exhibited by both the conical and cylindrical indentations—two limiting cases of the former.


Sign in / Sign up

Export Citation Format

Share Document