Modelling engineered barriers for spent nuclear fuel repository using a double-structure model for pellets

2020 ◽  
Vol 7 (1) ◽  
pp. 72-94
Author(s):  
Erdem Toprak ◽  
Sebastia Olivella ◽  
Xavier Pintado
2009 ◽  
Vol 1193 ◽  
Author(s):  
A. Loida ◽  
R. Gens ◽  
V. Metz ◽  
K. Lemmens ◽  
C. Cachoir ◽  
...  

AbstractThis study is focused on the alteration behavior of spent nuclear fuel when exposed to highly alkaline groundwater. Contact of highly alkaline solution with the waste product is considered in the Belgian concept for disposal in the Boom Clay formation. According to the “supercontainer design” the fuel will be encapsulated in carbon steel canisters, surrounded by a concrete over-pack. After saturation of the engineered barriers by porewater, interactions with the concrete will result in solutions rich in NaOH, KOH and Ca(OH)2. Using this type of solution at pH 12.5, spent nuclear fuel corrosion experiments were conducted over 378 days. Under anoxic conditions, parallel experiments were performed (a) in the absence of Fe phases and (b) in the presence of solid Fe phases representing container (corrosion) products. Both types of experiments resulted in relatively low matrix dissolution rates, around 10-7 per day, according to the fractional release of Sr. Solution concentrations of actinides are close to or below the detection limit, indicating an effective retention of these radioelements in the system. The observed precipitation of a Ca rich phase onto the surfaces of the corroded fuel samples may be related to the inhibited re-lease of actinides, Sr and other matrix bound radioelements.


2002 ◽  
Author(s):  
Glenn E. McCreery ◽  
Keith G. Condie ◽  
Randy C. Clarksean ◽  
Donald M. McEligot

2020 ◽  
Vol 2020 (1) ◽  
pp. 67-77
Author(s):  
Nikita Vladimirivich Kovalyov ◽  
Boris Yakovlevich Zilberman ◽  
Nikolay Dmitrievich Goletskiy ◽  
Andrey Borisovich Sinyukhin

ANRI ◽  
2020 ◽  
pp. 45-53
Author(s):  
A. Lachugin ◽  
M. Kocherygin ◽  
A. Gayazov ◽  
Yury Martynyuk ◽  
A. Vasil'ev

The paper presents basic results of development of a criticality accident alarm system to ensure safe retrieval of the spent nuclear fuel from the Lepse Floating Maintenance Base. The key features and engineering aspects of the system design are described. Locations of criticality detector units and selected alarm level settings are justified, hazardous area boundaries were identified, and parameters to identify inadequately protected zones were calculated. The SRKS-01D criticality accident alarm system by SPC “Doza” was selected as base equipment. The system was commissioned in 2019 and has been successfully operated for more than 6 months.


2018 ◽  
Author(s):  
Kaushik Banerjee ◽  
Thomas M. Evans ◽  
Gregory G. Davidson ◽  
Steven P. Hamilton

Sign in / Sign up

Export Citation Format

Share Document