boom clay
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 28)

H-INDEX

29
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Jesus Alberto Casillas-Trasvina ◽  
Bart Rogiers ◽  
Koen Beerten ◽  
Laurent Wouters ◽  
Kristine Walraevens

Abstract. Heat is a naturally occurring widespread groundwater tracer that can be used to identify flow patterns in groundwater systems. Temperature measurements, being relatively inexpensive and effortless to gather, represent a valuable source of information which can be exploited to reduce uncertainties on groundwater flow, and e.g. support performance assessment studies on waste disposal sites. In a lowland setting, however, hydraulic gradients are typically small, and whether temperature measurements can be used to inform us about catchment-scale groundwater flow remains an open question. For the Neogene aquifer in Flanders, groundwater flow and solute transport models have been developed in the framework of safety and feasibility studies for the underlying Boom Clay Formation as potential host rock for geological disposal of radioactive waste. However, the simulated fluxes by these models are still subject to large uncertainties, as they are typically constrained by hydraulic heads only. In the current study we use a state-of-the-art 3D steady-state groundwater flow model, calibrated against hydraulic head measurements, to build a 3D transient heat-transport model, for assessing the use of heat as an additional state variable, in a lowland setting, at the catchment scale. We therefore use temperature-depth (TD) profiles as additional state variable observations for inverse conditioning. Furthermore, a Holocene paleo-temperature time curve was constructed based on paleo-temperature reconstructions in Europe from several sources in combination with land-surface temperature (LST) imagery remote sensing monthly data from 2001 to 2019 (retrieved from NASA’s MODIS). The aim of the research is to understand the mechanisms of heat transport and to characterize the temperature distribution and dynamics in the Neogene aquifer. The simulation results clearly underline advection/convection and conduction as the major heat transport mechanisms, with a reduced role of advection/convection in zones where flux magnitudes are low, which suggests temperature is a useful indicator also in a lowland setting. Furthermore, performed scenarios highlight the important roles of i) surface hydrological features and withdrawals driving local groundwater flow systems, and ii) the inclusion of subsurface features like faults in the conceptualization and development of hydrogeological investigations. These findings serve as a proxy of the influence of advective transport and barrier/conduit role of faults, particularly the Rauw Fault in this case, and suggest that solutes released from the Boom Clay might be affected in similar ways.


Geophysics ◽  
2021 ◽  
pp. 1-64
Author(s):  
Cinzia Bellezza ◽  
Flavio Poletto ◽  
Biancamaria Farina ◽  
Giorgia Pinna ◽  
Laurent Wouters ◽  
...  

The problem of localizing small (relative to wavelength) scatterers by diffractions to enhance their use in identifying small-scale details in a seismic image is extremely important in shallow exploration, to identify interesting features such as fractures, caves and faults. The conventional approach based on seismic reflection is limited in resolution by the Rayleigh criterion. In certain acquisition geometries, such as crosswell surveys aimed at obtaining high resolution signals, the availability of suitable datasets for effective migration depends on the spatial extent of the available source and receiver data intervals. With the aim of overcoming the resolution limits of seismic reflection, we studied the detectability, response, and location of meter- and possibly sub-meter-dimension carbonate concretions (septaria) in the Boom Clay Formation (potential host rocks for radioactive waste disposal) by diffraction analysis of high-frequency signals. We investigated diffraction wavefields by signal separation, focusing, and high-resolution coherency analysis using the MUltiple Signal Classification (MUSIC) method and semblance. The investigation was performed for two different surveys in Belgium, a shallow and high resolution Reverse Vertical Seismic Profile (RVSP) and a near-offset crosswell application at Kruibeke and ON-MOL-2 sites, respectively. The data analysis is supported by synthetic wavefield modeling. The multi-offset RVSP provides the appropriate geometry to observe and investigate the septaria diffractions both from depth and the surface. The crosswell approach, calibrated using synthetic data in the analysis of wavefield patterns in 2D, shows promising imaging results with field data of a selected diffraction zone in the interwell area.


2021 ◽  
pp. 105156
Author(s):  
Miroslav Honty ◽  
Lander Frederickx ◽  
Lian Wang ◽  
Mieke De Craen ◽  
Peter Thomas ◽  
...  

2021 ◽  
Vol 13 (18) ◽  
pp. 10007
Author(s):  
Elke Jacops ◽  
Quoc Tri Phung ◽  
Lander Frederickx ◽  
Séverine Levasseur

In many countries, the preferred option for the long-term management of high- and intermediate level radioactive waste and spent fuel is final disposal in a geological repository. In this geological repository, the generation of gas will be unavoidable. In order to make a correct balance between gas generation and dissipation by diffusion, knowledge of the diffusion coefficients of gases in the host rock and the engineered barriers is essential. Currently, diffusion coefficients for the Boom Clay, a potential Belgian host rock, are available, but the diffusion coefficients for gases in the engineered concrete barriers are still lacking. Therefore, diffusion experiments with dissolved gases were performed on two concrete-based barrier materials considered in the current Belgian disposal concept, by using the double through-diffusion technique for dissolved gases, which was developed in 2008 by SCK CEN. Diffusion measurements were performed with four gases including helium, neon, methane and ethane. Information on the microstructure of the materials (e.g., pore size distribution) was obtained by combining N2-adsorption, mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM) and water sorptivity measurements. A comparison was made with data obtained from cement-based samples (intact and degraded), and the validity of existing predictive models was investigated.


2021 ◽  
Author(s):  
Gema De la Morena ◽  
Vicente Navarro ◽  
Laura Asensio ◽  
Domenico Gallipoli

AbstractThis paper presents a constitutive model that predicts the water retention behaviour of compacted clays with evolving bimodal pore size distributions. In line with previous research, the model differentiates between the water present inside the saturated pores of the clay aggregates (the microstructure) and the water present inside the pores between clay aggregates (the macrostructure). A new formulation is then introduced to account for the effect of the macrostructural porosity changes on the retention behaviour of the soil, which results in a consistent evolution of the air-entry value of suction with volumetric deformations. Data from wetting tests on three different active clays (i.e. MX-80 bentonite, FEBEX bentonite, and Boom clay), subjected to distinct mechanical restraints, were used to formulate, calibrate, and validate the proposed model. Results from free swelling tests were also modelled by using both the proposed double porosity model and a published single porosity model, which confirmed the improvement in the predictions of degree of saturation by the present approach. The proposed retention model might be applied, for example, to the simulation of the hydromechanical behaviour of engineered bentonite barriers in underground nuclear waste repositories, where compacted active clays are subjected to changes of both suction and porosity structure under restrained volume conditions.


2021 ◽  
Vol 54 (5) ◽  
pp. 2197-2218
Author(s):  
Guangjing Chen ◽  
Arnaud Dizier ◽  
Xiangling Li ◽  
Jan Verstricht ◽  
Xavier Sillen ◽  
...  

2021 ◽  
Vol 125 ◽  
pp. 104857
Author(s):  
Miroslav Honty ◽  
Lander Frederickx ◽  
Dipanjan Banerjee ◽  
Alwina Hoving

2021 ◽  
Author(s):  
Delphine Durce ◽  
Sonia Salah ◽  
Norbert Maes ◽  
Lian Wang ◽  
Stéphane Brassinnes

Sign in / Sign up

Export Citation Format

Share Document