clay formation
Recently Published Documents


TOTAL DOCUMENTS

438
(FIVE YEARS 89)

H-INDEX

34
(FIVE YEARS 5)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 181
Author(s):  
Yuchen Wang ◽  
Tong Zhao ◽  
Zhifang Xu ◽  
Huiguo Sun ◽  
Jiangyi Zhang

Germanium/Silicon (Ge/Si) ratio is a common proxy for primary mineral dissolution and secondary clay formation yet could be affected by hydrothermal and anthropogenic activities. To decipher the main controls of riverine Ge/Si ratios and evaluate the validity of the Ge/Si ratio as a weathering proxy in the Tibetan Plateau, a detailed study was presented on Ge/Si ratios in the Yarlung Tsangpo River, southern Tibetan Plateau. River water and hydrothermal water were collected across different climatic and tectonic zones, with altitudes ranging from 800 m to 5000 m. The correlations between TDS (total dissolved solids) and the Ge/Si ratio and Si and Ge concentrations of river water, combined with the spatial and temporal variations of the Ge/Si ratio, indicate that the contribution of hydrothermal water significantly affects the Ge/Si ratio of the Yarlung Tsangpo River water, especially in the upper and middle reaches. Based on the mass balance calculation, a significant amount of Ge (11–88%) has been lost during its transportation from hydrothermal water to the river system; these could result from the incorporation of Ge on/into clays, iron hydroxide, and sulfate mineral. In comparison, due to the hydrothermal input, the average Ge/Si ratio in the Yarlung Tsangpo River is a magnitude order higher than the majority of rivers over the world. Therefore, evaluation of the contribution of hydrothermal sources should be considered when using the Ge/Si ratio to trace silicate weathering in rivers around the Tibetan Plateau.


2022 ◽  
Vol 578 ◽  
pp. 117339
Author(s):  
Xu (Yvon) Zhang ◽  
Jérôme Gaillardet ◽  
Laurie Barrier ◽  
Julien Bouchez
Keyword(s):  

2021 ◽  
Vol 24 (3-4) ◽  
pp. 167-177
Author(s):  
Yves QUINIF ◽  
Marc LEGROS

The Lorette Cave contains a wide variety of deposits within various stratigraphical contexts. This cave is a part of the complex underground meander cut-off of the Wamme and Lomme rivers, between some swallow-holes along their two talwegs near On, Jemelle and Rochefort, and the general resurgence at Eprave. The Lorette Cave is embedded within the Givetian limestone formations of the Calestienne. This cave displays the first part with a labyrinthic structure. Some parts of the cave galleries are affected by recent tectonic activity, which dislocates some galleries and provokes collapses. The second part of the cave comprises the West Gallery, which contains the most complete sedimentary series. The “gours suspendus” (hanging gours) section is located at the western end of the gallery. The cave contains numerous and rich detrital deposits. The oldest sedimentary unit is a diamictite found in several galleries (e.g. Galerie Fontaine-Bagdad, Salle du Cataclysme). It is composed of large decametric-sized quartz and sandstone pebbles coming from the erosion of the Lower Devonian formations of the Ardenne. This deposit is older than the U/Th dating limit, i.e. 350 ka. The West Gallery exposes an area of collapsed blocks and ends in a vast room. This gallery is filled with a thick fluvial series of upper Pleistocene age and capped by speleothems of Tardiglacial to Holocene age. The large terminal chamber is clogged by flooded pits. A tributary gallery shows a sedimentary series in a subsiding pit, the “Fosse aux Lions” (Lions’ Pit). These deposits are interstratified diamictite interbedded between two fluvial units, the upper part of which displays oblique stratifications. The dating of a summit stalagmite places this set at 120 ka. The present paper analyses a section made in the southern flank of the terminal room, close to the junction with the West Gallery: the “gours suspendus” section. A large part of this section consists of a complex fluvial deposit disconformably resting on top of a compact lower clay formation. This fluvial deposit is stratified, comprising mostly diamictites interstratified with thin levels of gravel and clay. It is capped by an upper clay unit and sealed by a flowstone. Thin strata of finer-grained size sediments (coarse sand), as well as clay lenses, occur within the lower clay. The diamictites indicate a torrential origin of the sediment. At the base, just above the lower clay, some sandy channelling strata testify that one or several fluvial deposition episodes occurred. Then, torrential and probably very short-living events are separated by decantation phases. The pebbles and smaller particles are made of quartz, sandstone and muscovite that most probably originated in the Lower Devonian formations. The “gours suspendus” section provides a new illustration of the succession of sedimentation and erosion phases in Belgian caves. It is now well demonstrated that speleothems grow mainly during temperate to hot and humid climatic phases and detrital infills are deposited in caves during cold/glacial phases. The physical erosion of sediments with ravine formations should be placed in the climatic history of the region. A gullying by a coarse detrital formation like that of the new section is due to a powerful heavy loaded current. The deposits within caves were therefore available, which can only occur during a cold phase due to the absence of continuous vegetation cover. The sand and clay levels interstratified between levels of pebbles indicate nevertheless distinguished flow regimes. However, this torrential lava in the new section seems different from the old diamictite. The deposition of the sedimentary units in the West Gallery seemingly happened during a glacial–interglacial transition. This sedimentological study sets a future perspective for dating flowstones and stalagmites at the top of or embedded within the deposit levels in order to propose a more robust chronological frame for the evolution dynamics of the cave infilling of the Lorette Cave in relation to the climatic history of the region.


Geophysics ◽  
2021 ◽  
pp. 1-64
Author(s):  
Cinzia Bellezza ◽  
Flavio Poletto ◽  
Biancamaria Farina ◽  
Giorgia Pinna ◽  
Laurent Wouters ◽  
...  

The problem of localizing small (relative to wavelength) scatterers by diffractions to enhance their use in identifying small-scale details in a seismic image is extremely important in shallow exploration, to identify interesting features such as fractures, caves and faults. The conventional approach based on seismic reflection is limited in resolution by the Rayleigh criterion. In certain acquisition geometries, such as crosswell surveys aimed at obtaining high resolution signals, the availability of suitable datasets for effective migration depends on the spatial extent of the available source and receiver data intervals. With the aim of overcoming the resolution limits of seismic reflection, we studied the detectability, response, and location of meter- and possibly sub-meter-dimension carbonate concretions (septaria) in the Boom Clay Formation (potential host rocks for radioactive waste disposal) by diffraction analysis of high-frequency signals. We investigated diffraction wavefields by signal separation, focusing, and high-resolution coherency analysis using the MUltiple Signal Classification (MUSIC) method and semblance. The investigation was performed for two different surveys in Belgium, a shallow and high resolution Reverse Vertical Seismic Profile (RVSP) and a near-offset crosswell application at Kruibeke and ON-MOL-2 sites, respectively. The data analysis is supported by synthetic wavefield modeling. The multi-offset RVSP provides the appropriate geometry to observe and investigate the septaria diffractions both from depth and the surface. The crosswell approach, calibrated using synthetic data in the analysis of wavefield patterns in 2D, shows promising imaging results with field data of a selected diffraction zone in the interwell area.


2021 ◽  
Vol 11 (24) ◽  
pp. 12021
Author(s):  
José Nespereira ◽  
José Antonio Blanco ◽  
Mercedes Suárez ◽  
Emilia García-Romero ◽  
Mariano Yenes ◽  
...  

The Dueñas Clay Formation is considered an example of a deposit of lacustrine continental origin. It is formed mainly by overconsolidated clays and includes feldspathic arenites, and clayey and silty levels; however, in geotechnical projects it is considered a clay unit and treated as a whole. The structure of each level was assessed in the field, in thin sections, and by SEM in the case of the clayey level. In addition, identification, strength, deformation, and durability tests were undertaken according to the nature of the samples (grain size analysis, Atterberg Limits, point load test, direct shear tests, uniaxial compression tests, swelling pressure, and unidimensional consolidation tests). The durability test was used as a criterion for dividing the levels within the formation according to their behavior as soil or rock. It was observed that the proportion and type of carbonate cementation controls the way in which the material behaves, with sparithic cement increasing the strength. The clay levels are expansive due to the presence of smectite, which also influences their behavior under shear stress. In addition, the massive and laminar structure of the layers caused by the continental conditions, in addition to the processes of post-sedimentation, explain their low compressibility.


Author(s):  
Jennifer L. Bentz ◽  
Ronald C. Peterson

ABSTRACT The mudflats of saline lakes are amenable to authigenic clay formation due to the high ionic strength of the solutions driven by evaporative concentration and due to the fluctuating wet/dry cycles. However, the mudflats of saline lakes have received relatively little study given the challenges in sampling unstable sediments coupled with post-depositional alterations that make direct relationships to the climate difficult. In an effort to gain a better understanding of the authigenic phyllosilicates present, the mudflats of 17 sulfate-rich saline lake basins across southern Saskatchewan were sampled. The <2 μm fraction was separated from the sediments and analyzed utilizing X-ray diffraction (XRD), scanning electron microscopy, bulk chemical analysis via digestion and inductively coupled optical emission spectroscopy, and visible and near-infrared reflectance spectroscopy. The mudflat sediments were characterized as highly variable and were classified based on particle size into sediment classes A (clay-rich), B (unsorted till), and C (sand). Despite the high variability in sorting and thickness of the sedimentary layers, the phyllosilicates were distinctive within each class independent of the basin. Phyllosilicates in sediment class A were characterized by well-crystalline dioctahedral (Al) clays similar to the surrounding soils with smectite > illite > kaolinite > chlorite. Phyllosilicates from sediment class B displayed highly variable characteristics ranging between classes A and C. Clays from sediment class C were dominated by illite with decreasing proportions of smectite, kaolinite, and chlorite. The illite in the sand lenses was poorly formed, with broad reflections in the XRD patterns indicative of small crystallite size or high disorder, which is consistent with an authigenic nature. The clays in class C were rich in iron (Fe) and magnesium (Mg) and displayed lath-like morphologies common with authigenic illite forming in sandy porous sediments. The sand lenses of mudflats represent viable targets for finding authigenic clay minerals in detrital-rich sediments to use in understanding past climates on Earth and Mars.


2021 ◽  
Author(s):  
◽  
Troy Collier

<p>Acquisition of high quality 2D seismic data by the New Zealand Government in 2009-10 (the PEG09 Survey) sparked new interest in Pegasus Basin, an offshore frontier basin situated east of central New Zealand. Although no wells have been drilled in Pegasus Basin, strata exposed onshore in southern Wairarapa and northeastern Marlborough provide useful analogues for the sedimentary fill of the basin. Using field observations in combination with petrographic analysis and seismic interpretation, this study provides a more complete understanding of the geology of Pegasus Basin.  13 outcrop localities are described from the surrounding southern Wairarapa and northern Marlborough regions, which are inferred to have been deposited in a range of depositional environments including fluvial, terrestrial and shallow marine deposits, through to inner – mid shelf, and deep marine channel-levee and submarine fans, with fine-grained sedimentation at bathyal depths. These outcrops provide representative and well-exposed examples of facies and lithologies typical of the depositional environments that are likely to exist in Pegasus Basin.  Petrographic analysis of six Cretaceous and six Neogene sandstones from Marlborough and Wairarapa regions has revealed that they are compositionally classified as litharenites and feldspathic litharenites, derived from the Torlesse Supergroup. Primary porosity is best preserved in Neogene sandstones, whilst Cretaceous sandstones only tend to preserve secondary porosity, in the form of fractures or dissolution of framework grains. Carbonate cementation, compaction and authigenic clay formation are the biggest contributing factors that degrade reservoir quality.  Seismic interpretation of the PEG09 survey has revealed that Pegasus Basin contains a sedimentary succession over 10,000 m thick, that mantles Early Cretaceous syn-tectonic strata in various states of deformation attained during mid-Cretaceous subduction at the eastern Gondwana margin. Key horizons mapped extensively over the basin highlight seismic reflection packages, which are linked to described outcrop localities onshore, based on reflection characteristics and geometries. The Miocene succession contains up to 4,000 m of sediments that are likely to include promising reservoir lithologies akin to the Great Marlborough Conglomerate of Marlborough, or the Whakataki Formation of Wairarapa.</p>


2021 ◽  
Author(s):  
◽  
Troy Collier

<p>Acquisition of high quality 2D seismic data by the New Zealand Government in 2009-10 (the PEG09 Survey) sparked new interest in Pegasus Basin, an offshore frontier basin situated east of central New Zealand. Although no wells have been drilled in Pegasus Basin, strata exposed onshore in southern Wairarapa and northeastern Marlborough provide useful analogues for the sedimentary fill of the basin. Using field observations in combination with petrographic analysis and seismic interpretation, this study provides a more complete understanding of the geology of Pegasus Basin.  13 outcrop localities are described from the surrounding southern Wairarapa and northern Marlborough regions, which are inferred to have been deposited in a range of depositional environments including fluvial, terrestrial and shallow marine deposits, through to inner – mid shelf, and deep marine channel-levee and submarine fans, with fine-grained sedimentation at bathyal depths. These outcrops provide representative and well-exposed examples of facies and lithologies typical of the depositional environments that are likely to exist in Pegasus Basin.  Petrographic analysis of six Cretaceous and six Neogene sandstones from Marlborough and Wairarapa regions has revealed that they are compositionally classified as litharenites and feldspathic litharenites, derived from the Torlesse Supergroup. Primary porosity is best preserved in Neogene sandstones, whilst Cretaceous sandstones only tend to preserve secondary porosity, in the form of fractures or dissolution of framework grains. Carbonate cementation, compaction and authigenic clay formation are the biggest contributing factors that degrade reservoir quality.  Seismic interpretation of the PEG09 survey has revealed that Pegasus Basin contains a sedimentary succession over 10,000 m thick, that mantles Early Cretaceous syn-tectonic strata in various states of deformation attained during mid-Cretaceous subduction at the eastern Gondwana margin. Key horizons mapped extensively over the basin highlight seismic reflection packages, which are linked to described outcrop localities onshore, based on reflection characteristics and geometries. The Miocene succession contains up to 4,000 m of sediments that are likely to include promising reservoir lithologies akin to the Great Marlborough Conglomerate of Marlborough, or the Whakataki Formation of Wairarapa.</p>


2021 ◽  
Vol 1 ◽  
pp. 83-84
Author(s):  
Jens T. Birkholzer ◽  
Liange Zheng ◽  
Jonny Rutqvist

Abstract. This presentation gives on overview of the complex thermo-hydro-mechanical-chemical (THMC) processes occurring during the disposal of heat-producing high-level radioactive waste in geologic repositories. A specific focus is on the role of compacted bentonite, which is commonly used as an engineered backfill material for emplacement tunnels because of its low permeability, high swelling pressure, and radionuclide retention capacity. Laboratory and field tests integrated with THMC modeling have provided an effective way to deepen our understanding of temperature-related perturbations in the engineered barrier system; however, most of this work has been conducted for maximum temperatures around 100 ∘C. In contrast, some international disposal programs have recently started investigations to understand whether local temperatures in the bentonite of up to 200 ∘C could be tolerated with no significant changes to safety relevant properties. Raising the maximum temperature is attractive for economical and safety reasons but faces the challenge of exposing the bentonite to significant temperature increases. Strong thermal gradients may induce complex moisture transport processes while geochemical processes, such as cementation and perhaps also illitization effects may occur, all of which could strongly affect the bentonite and near-field rock properties. Here, we present initial investigations of repository behavior exposed to strongly elevated temperatures. We will start discussing our current knowledge base for temperature effects in repositories exposed to a maximum temperature of 100 ∘C, based on data and related modeling analysis from a large heater experiment conducted for over 18 years in the Grimsel Test Site in Switzerland. We then show results from coupled THMC simulations of a nuclear waste repository in a clay formation exposed to a maximum temperature of 200 ∘C. We also explore preliminary data from a bench-scale laboratory mock-up experiment, which was designed to represent the strong THMC gradients occurring in a “hot” repository, and we finally touch on a full-scale field heater test to be conducted soon in the Grimsel Test Site underground research laboratory in Switzerland (referred to as HotBENT).


2021 ◽  
Vol 1 ◽  
pp. 47-48
Author(s):  
Bernhard Schuck ◽  
Tilo Kneuker

Abstract. Deep geological formations are considered for safe long-term disposal of high-level radioactive waste. Such a repository would be requested to prevent radionuclides from entering the biosphere for a period of 1 million years (StandAG, 2017). Consequently, a holistic characterization including lithological, mineralogical, geochemical, hydrological, structural and geomechanical properties of any potential repository-hosting rock formation is required. Nine claystone formations have been identified as “sub-areas” within the German site-selection procedure (BGE, 2020). The area covered by these formations comprises about half of the total area considered as being qualified for further exploration. However, despite its relevance to act as a geological barrier for, e.g. hydrocarbons or radionuclides, the characterization of clay-rich formations at depths exceeding 300 m in Germany has attained substantially less attention than economically more relevant units hosted by, e.g. sandstones or rock salt, which have been intensively explored. The BGR project BASTION aims at contributing to characterizing these claystone formations and emphasizes properties relevant to host a repository for nuclear waste. Investigations comprise (micro)structural/petrographic, mineralogical, geochemical, geophysical, hydraulic and thermomechanical analyses. In project phase I (2013–2019), claystones deposited in Northern Germany during the Lower Cretaceous were studied. These rocks belong to the fourth largest sub-area hosting claystones. Two of the main foci were to explore variations in lithology, mineralogy and geochemistry, and to identify deformation mechanisms (natural and artificial) by microstructural analyses. Although rocks appeared to be quite homogeneous on the 10–100 m scale, the results revealed distinct structural and sedimentary heterogeneities on the meter scale affecting fracture density. Another sub-area located in Southern Germany hosts the Opalinus Clay Formation (OPA). This up to 150 m thick claystone formation was deposited during the Middle Jurassic (Franz and Nitsch, 2009). Owing to its self-sealing capacity and ability to retain fluids, it is supposed to host the nuclear waste repository of Switzerland (Bossart et al., 2017). The OPA is quite well understood in terms of its lithology and (bio)stratigraphy, and there have been mineralogical, hydrological and petrophysical analyses, mostly documented in university theses a few decades old and sometimes difficult to access. However, it is questionable to what extent these investigations reflect the situation at depths relevant for the site-selection procedure. Well-documented data on the OPA and its properties relevant for nuclear waste disposal are available via the Swiss site-selection procedure (Bossart et al., 2017). However, as there remain substantial questions regarding the nature of the German portions of the OPA (e.g. spatial distribution of lithology, mineralogy, microstructures) at depths greater than a few decameters, it is unclear to what degree insights obtained in the Swiss site-selection procedure also account for Germany. Therefore, phase II of BASTION, which began in 2020, aims to use the multidisciplinary approach developed during phase I to characterize properties of the OPA relevant for the save long-term disposal of nuclear waste by identifying and quantifying structural and rheological heterogeneities. This will constitute important input for numerical models in any long-term safety assessment.


Sign in / Sign up

Export Citation Format

Share Document