Uniaxial stress–strain relation for low- and normal-strength concrete in compression

2021 ◽  
pp. 1-9
Author(s):  
Muhammet Musab Erdem ◽  
Murat Bikçe
2020 ◽  
Vol 23 (16) ◽  
pp. 3481-3495
Author(s):  
Junlong Yang ◽  
Jizhong Wang ◽  
Ziru Wang

Due to the influence of “arching action” in fiber-reinforced polymer (FRP) partially confined concrete columns as a result of the unconfined regions, the confinement of the concrete columns wrapped with discrete FRP strips is less efficient when compared with full wrapping schemes. This study comprehensively investigates the difference of the the confinement mechanism between fully and partially FRP confined circular normal-strength concrete and thus presents a new design-oriented model to predict the stress–strain relationships of partially FRP confined normal-strength concrete. The formulas used to determine the strength and corresponding strain of several key points on the stress–strain curves are also proposed by the regression analysis according to a reliable test database from the relevant literature. Besides, another selected database including 100 FRP partially wrapped circular concrete columns is also collected for model verification. The results show that better performance can be achieved by the new model compared with the selected models in predicting the ultimate conditions of partially FRP confined concrete. Finally, some specimens are chosen to assess the performance of the new model in predicting the complete axial stress–strain curves. The comparisons reveal that satisfactory accuracy and good agreement can be achieved between the theoretical predictions and experimental observations.


1979 ◽  
Vol 101 (3) ◽  
pp. 254-257 ◽  
Author(s):  
A. Merzer ◽  
S. R. Bodner

The equation for plastic strain rate in the Bodner-Partom viscoplastic formulation is integrated under conditions of uniaxial stress, constant plastic strain rate, and isotropic hardening to give an analytical expression for the stress as a function of plastic strain and strain rate. Temperature dependence is introduced which leads to a general relationship between stress, strain, strain rate, and temperature. The resulting equation indicates an asymptotic saturation stress whose dependence on strain rate and temperature appears to agree with experimental results. Strain hardening given by the analytical equation also seems to be consistent with experiments. A possible new definition of yield stress is a consequence of the rate dependent stress-strain relation.


Sign in / Sign up

Export Citation Format

Share Document