Accurate measurement of stress–strain relation under high strain rate condition by using non-coaxial Hopkinson bar method

Author(s):  
T. Umeda ◽  
K. Mimura
2014 ◽  
Vol 98 ◽  
pp. 93-99 ◽  
Author(s):  
Jae Hyun Kim ◽  
N. Alan Heckert ◽  
Stefan D. Leigh ◽  
Richard L. Rhorer ◽  
Haruki Kobayashi ◽  
...  

2022 ◽  
pp. 111737
Author(s):  
Tsai-Fu Chung ◽  
Shih-Yuan Lu ◽  
Yo-Shiuan Lin ◽  
You-Lin Li ◽  
Po-Han Chiu ◽  
...  

2011 ◽  
Vol 189-193 ◽  
pp. 2522-2525
Author(s):  
Zheng Hua Meng ◽  
Shang Yu Huang ◽  
Jian Hua Hu

Process simulation is a powerful tool to predict material behaviors under specified deformation conditions, so as to optimize the processing parameters. The equation for flow stress is important to numerically analyze. However, the reported constitutive equations of magnesium alloy are only suitable for processing simulation with strain rate between 0.001-1s-1. In this paper, the strain-stress behavior of AZ31 under warm and high strain rate (>103s-1) condition has been investigated by split Hopkinson pressure bar experiments at elevated temperature. The results show that the influence of the temperature on flow stress is more obvious than that of strain rate; the flow stress decreases with the rise of temperature at a certain strain rate. Based on Johnson-Cook model, the constitutive equation of AZ31 magnesium alloy under warm and high strain rate condition has been given out by fitting the experimental data, which can be applied in process simulation of AZ31 magnesium alloy sheet forming.


2015 ◽  
Vol 3 (2) ◽  
pp. 80-85
Author(s):  
Sunita Mishra ◽  
Tanusree Chakraborty ◽  
Dipanjan Basu

2014 ◽  
Vol 566 ◽  
pp. 80-85
Author(s):  
Kenji Nakai ◽  
Takashi Yokoyama

The present paper is concerned with constitutive modeling of the compressive stress-strain behavior of selected polymers at strain rates from 10-3 to 103/s using a modified Ramberg-Osgood equation. High strain-rate compressive stress-strain curves up to strains of nearly 0.08 for four different commercially available extruded polymers were determined on the standard split Hopkinson pressure bar (SHPB). The low and intermediate strain-rate compressive stress-strain relations were measured in an Instron testing machine. Six parameters in the modified Ramberg-Osgood equation were determined by fitting to the experimental stress-strain data using a least-squares fit. It was shown that the monotonic compressive stress-strain behavior over a wide range of strain rates can successfully be described by the modified Ramberg-Osgood constitutive model. The limitations of the model were discussed.


2011 ◽  
Vol 46 (9) ◽  
pp. 1051-1065 ◽  
Author(s):  
Wonsuk Kim ◽  
Alan Argento ◽  
Ellen Lee ◽  
Cynthia Flanigan ◽  
Daniel Houston ◽  
...  

The high strain-rate constitutive behavior of polymer composites with various natural fibers is studied. Hemp, hemp/glass hybrid, cellulose, and wheat straw-reinforced polymeric composites have been manufactured, and a split-Hopkinson pressure bar apparatus has been designed to measure the dynamic stress–strain response of the materials. Using the apparatus, compressive stress–strain curves have been obtained that reveal the materials’ constitutive characteristics at strain rates between 600 and 2400 strain/s. Primary findings indicate that natural fibers in thermoset composites dissipate energy at lower levels of stress and higher strain than glass-reinforced composites. In the case of thermoplastic matrices, the effect on energy dissipation of natural fibers vs. conventional talc reinforcements is highly dependent on resin properties. Natural fibers in polypropylene homopolymer show improved reinforcement but have degraded energy dissipation compared to talc. Whereas in polypropylene copolymer, natural fibers result in improved energy dissipation compared to talc. These data are useful for proper design, analysis, and simulation of lightweight biocomposites.


Sign in / Sign up

Export Citation Format

Share Document