Seismic performance assessment of reinforced concrete wall piers for out-of-plane seismic loads

2021 ◽  
pp. 1-16
Author(s):  
Tae-Hoon Kim ◽  
Ki-Young Eum
2016 ◽  
Vol 16 (05) ◽  
pp. 1550012 ◽  
Author(s):  
Yu Zhang ◽  
Hong-Nan Li ◽  
Gang Li

In this paper, the seismic performance of offshore reinforced concrete (RC) bridges during their life cycle periods is assessed by the pushover analysis based on the concept of the force analogy method (FAM). The governing equations and implementation process of the proposed pushover method are first derived. The material nonlinearity is modeled by the local plastic mechanism, which is capable of simulating the monotonic strength hardening and softening behaviors of RC piers. The chloride ions corrosion effect for the RC bridges located in coastal areas is considered by using the deterioration model for the mechanical property of reinforcement steel. Besides, structural stability against overturning is considered by incorporating the geometric nonlinearity with the FAM. Since the initial stiffness matrices remain constant through the computation process, the advantages of the FAM, such as high efficiency and stability, are retained. A numerical example is carried out to illustrate the process of seismic performance assessment for offshore RC bridges with the FAM.


2015 ◽  
Vol 5 (1) ◽  
pp. 15-22 ◽  
Author(s):  
M. Fofiu ◽  
A. Bindean ◽  
V. Stoian

Abstract The Precast Reinforced Concrete Wall Panel (PRCWP) presented in this paper is part of an experimental study regarding the seismic performance of precast reinforced concrete wall panels, strengthening strategies and investigation on the weakening induced by modifying the opening in these elements due to architectural demands, change of function of buildings or other reasons. The element presented is 1:1.2 scale typical Reinforced Concrete Wall Panel with a window opening used in Romania, in which the opening was changed to a door opening due to comfort considerations. The specimen was subjected to cyclic loading with the lateral loads being applied in displacement control of 0.1% drift ratio. This simulates the shear behaviour of the element. After testing the unstrengthen element we proceed to retrofit it using Carbon Fibre Strips anchored with Carbon Fibre Mash. The purpose of the paper is to present the strengthening strategy and restore the initial load bearing capacity of the element or even increase it. The experimental results of strengthen and unstrengthen specimens will be presented.


Author(s):  
Tae-Hoon Kim

The aim of this study is to analytically assess the seismic performance of reinforced concrete (RC) columns with interlocking hoops using a novel damage index, and to provide data for developing next generation seismic design criteria. Seismic performance of RC columns is controlled by the level of confinement provided by transverse steel. Interlocking hoops are commonly used in RC columns because they can provide more effective confinement than rectangular hoops. Three RC interlocking columns were tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), is used to analyze RC structures. Novel damage indices aim to provide a means of quantifying numerically the performance level in RC columns with interlocking hoops sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of interlocking columns is verified by comparison with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document