Seismic performance assessment of reinforced concrete moment resisting frame with low strength concrete

Structures ◽  
2020 ◽  
Author(s):  
Muhammad Rizwan ◽  
Naveed Ahmad ◽  
Akhtar Naeem Khan
1999 ◽  
Vol 26 (5) ◽  
pp. 606-617 ◽  
Author(s):  
A C Heidebrecht ◽  
N Naumoski

This paper describes an investigation into the seismic performance of a six-storey ductile moment-resisting frame structure located in Vancouver and designed and detailed in accordance with the seismic provisions of the National Building Code of Canada (1995). Both pushover and dynamic analyses are conducted using an inelastic model of the structure as designed and detailed. The structural performance of a number of design variations is evaluated using interstorey drift and member curvature ductility response as performance measures. All frames studied are expected to perform at an operational level when subjected to design level seismic excitations and to meet life safe performance criteria at excitations of twice the design level.Key words: seismic, building, frames, ductile, design, performance, reinforced concrete, code.


2016 ◽  
Vol 16 (05) ◽  
pp. 1550012 ◽  
Author(s):  
Yu Zhang ◽  
Hong-Nan Li ◽  
Gang Li

In this paper, the seismic performance of offshore reinforced concrete (RC) bridges during their life cycle periods is assessed by the pushover analysis based on the concept of the force analogy method (FAM). The governing equations and implementation process of the proposed pushover method are first derived. The material nonlinearity is modeled by the local plastic mechanism, which is capable of simulating the monotonic strength hardening and softening behaviors of RC piers. The chloride ions corrosion effect for the RC bridges located in coastal areas is considered by using the deterioration model for the mechanical property of reinforcement steel. Besides, structural stability against overturning is considered by incorporating the geometric nonlinearity with the FAM. Since the initial stiffness matrices remain constant through the computation process, the advantages of the FAM, such as high efficiency and stability, are retained. A numerical example is carried out to illustrate the process of seismic performance assessment for offshore RC bridges with the FAM.


Sign in / Sign up

Export Citation Format

Share Document