The influence of deposit body on the near-bed shear stress

Author(s):  
Yan He ◽  
Jing Zhang ◽  
Huling Jiang ◽  
Zhixue Guo ◽  
Hongxi Zhao
1996 ◽  
Vol 33 (9) ◽  
pp. 163-170 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul

Research was undertaken in order to identify possible methodologies for the prediction of sedimentation in storage chambers based on computational fluid dynamics (CFD). The Fluent CFD software was used to establish a numerical model of the flow field, on which further analysis was undertaken. Sedimentation was estimated from the simulated flow fields by two different methods. The first approach used the simulation to predict the bed shear stress distribution, with deposition being assumed for areas where the bed shear stress fell below a critical value (τcd). The value of τcd had previously been determined in the laboratory. Efficiency was then calculated as a function of the proportion of the chamber bed for which deposition had been predicted. The second method used the particle tracking facility in Fluent and efficiency was calculated from the proportion of particles that remained within the chamber. The results from the two techniques for efficiency are compared to data collected in a laboratory chamber. Three further simulations were then undertaken in order to investigate the influence of length to breadth ratio on chamber performance. The methodology presented here could be applied to complex geometries and full scale installations.


2021 ◽  
Author(s):  
Grace Chang ◽  
Galen Egan ◽  
Joseph D McNeil ◽  
Samuel McWilliams ◽  
Craig Jones ◽  
...  

1985 ◽  
pp. 115-121
Author(s):  
Susumu HASHIMOTO ◽  
Yoshitaka FUKUI ◽  
Hideo KIKKAWA

2018 ◽  
Vol 85 ◽  
pp. 241-245
Author(s):  
Qian Zhang ◽  
Zheng Gong ◽  
Changkuan Zhang ◽  
Jessica R. Lacy ◽  
Bruce E. Jaffe ◽  
...  

2020 ◽  
pp. 2338-2342
Author(s):  
Malasani Gopichand ◽  
Tapas Kumar Pradhan ◽  
K Murali ◽  
Venu Chandra

2019 ◽  
Vol 24 (2) ◽  
pp. 167
Author(s):  
Pradipta Nandi Wardhana

Groin is hydraulic structure utilized to protect riverbank from erosion. Groin will shift away flow. Area just downstream of groin structure will be occupied by low velocity flow hence there will be sediment deposition. Turbulence mechanism between primary flow region and groin field having important role in sediment exchange needs to be investigated. Instantaneous flow measurement was conducted in order to investigate turbulence relation between series groin under various groin spacing. Laboratory experiment employed turbulence flow having Reynolds number range between 31,935-32,500 and Froude number range between 0.051-0.053. A MicroADV 16-MHz was used to measure 3D instantaneous velocity. The experiment findings expressed that Reynolds stress involving vertical velocity  and    did not show any specific distributions except at the lowest measurement elevation, while Reynolds stress    showed specific distributions. Turbulence value difference between groin field and primary flow region at upstream of the groin field was significant. As the area was getting downstream, area containing high turbulence was wider. This work indicated that bed shear stress value  tended to grow at downstream area of groin field. High difference bed shear stress value  between primary flow region and groin field seized second groin field and third groin field.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1423
Author(s):  
Amir Golpira ◽  
Fengbin Huang ◽  
Abul B.M. Baki

This study experimentally investigated the effect of boulder spacing and boulder submergence ratio on the near-bed shear stress in a single array of boulders in a gravel bed open channel flume. An acoustic Doppler velocimeter (ADV) was used to measure the instantaneous three-dimensional velocity components. Four methods of estimating near-bed shear stress were compared. The results suggested a significant effect of boulder spacing and boulder submergence ratio on the near-bed shear stress estimations and their spatial distributions. It was found that at unsubmerged condition, the turbulent kinetic energy (TKE) and modified TKE methods can be used interchangeably to estimate the near-bed shear stress. At both submerged and unsubmerged conditions, the Reynolds method performed differently from the other point-methods. Moreover, a quadrant analysis was performed to examine the turbulent events and their contribution to the near-bed Reynolds shear stress with the effect of boulder spacing. Generally, the burst events (ejections and sweeps) were reduced in the presence of boulders. This study may improve the understanding of the effect of the boulder spacing and boulder submergence ratio on the near-bed shear stress estimations of stream restoration practices.


Sign in / Sign up

Export Citation Format

Share Document