Abstract. This study involves the analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 500 m snow products (MOD/MYD10A1), complemented with 250 m Level 1B data (MOD/MYD02QKM), to monitor ice cover during the break-up period on the Mackenzie River, Canada. Results from the analysis of data for 13 ice seasons (2001–2013) show that first day ice-off dates are observed between days of year (DOY) 115–125 and end DOY 145–155, resulting in average melt durations of about 30–40 days. Floating ice transported northbound could therefore generate multiple periods of ice-on and ice-off observations at the same geographic location. During the ice break-up period, ice melt was initiated by in situ (thermodynamic) melt over the drainage basin especially between 61–61.8° N (75–300 km). However, ice break-up process north of 61.8° N was more dynamically driven. Furthermore, years with earlier initiation of the ice break-up period correlated with above normal air temperatures and precipitation, whereas later ice break-up period was correlated with below normal precipitation and air temperatures. MODIS observations revealed that ice runs were largely influenced by channel morphology (islands and bars, confluences and channel constriction). It is concluded that the numerous MODIS daily overpasses possible with the Terra and Aqua polar orbiting satellites, provide a powerful means for monitoring ice break-up processes at multiple geographical locations simultaneously along the Mackenzie River.