Tholeiitic Basalt in Banyumas Basin (Kebasen, Central Java): The Evidence of Sedimentary Recycling Input and the Contribution of Oceanic Slab on Fore-arc Active Continental Margin (ACM) Magmatism

2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Fadlin Fadlin ◽  
Shaban Godang ◽  
Nita Ariyanti ◽  
Wildan Nur Hamzah ◽  
Maulana Rizki Aditama
2019 ◽  
Vol 157 (4) ◽  
pp. 677-689 ◽  
Author(s):  
Binsong Zheng ◽  
Chuanlong Mou ◽  
Renjie Zhou ◽  
Xiuping Wang ◽  
Zhaohui Xiao ◽  
...  

AbstractPermian–Triassic boundary (PTB) volcanic ash beds are widely distributed in South China and were proposed to have a connection with the PTB mass extinction and the assemblage of Pangea. However, their source and tectonic affinity have been highly debated. We present zircon U–Pb ages, trace-element and Hf isotopic data on three new-found PTB volcanic ash beds in the western Hubei area, South China. Laser ablation inductively coupled plasma mass spectrometry U–Pb dating of zircons yields ages of 252.2 ± 3.6 Ma, 251.6 ± 4.9 Ma and 250.4 ± 2.4 Ma for these three volcanic ash beds. Zircons of age c. 240–270 Ma zircons have negative εHf(t) values (–18.17 to –3.91) and Mesoproterozoic–Palaeoproterozoic two-stage Hf model ages (THf2) (1.33–2.23 Ga). Integrated with other PTB ash beds in South China, zircon trace-element signatures and Hf isotopes indicate that they were likely sourced from intermediate to felsic volcanic centres along the Simao–Indochina convergent continental margin. The Qinling convergent continental margin might be another possible source but needs further investigation. Our data support the model that strong convergent margin volcanism took place around South China during late Permian – Early Triassic time, especially in the Simao–Indochina active continental margin and possibly the Qinling active continental margin. These volcanisms overlap temporally with the PTB biocrisis triggered by the Siberian Large Igneous Province. In addition, our data argue that the South China Craton and the Simao–Indochina block had not been amalgamated with the main body of Pangea by late Permian – Early Triassic time.


1977 ◽  
Vol 40 (3-4) ◽  
pp. 183-199 ◽  
Author(s):  
Sh.A. Adamia ◽  
M.B. Lordkipanidze ◽  
G.S. Zakariadze

2019 ◽  
Vol 64 (5) ◽  
pp. 503-519
Author(s):  
R. O. Ovchinnikov ◽  
A. A. Sorokin ◽  
V. P. Kovach ◽  
A. B. Kotov

The first data about geochemical features of the Cambrian sedimentary rocks of the Mel’gin trough of the Bureya continental Massif, as well as ages of detrital zircons of them are obtained. It is established, that among the detrital zircons from the sandstones of the Chergilen and Allin formations of the Mel’gin trough zircons with Late Riphean (peaks on relative probability plots – 0.78, 0.82, 0.94, 1.04 Ga) and Early Riphean (peaks on relative probability plots – 1.38, 1.45, 1.64 Ga) ages predominate. The single grains have a Middle Riphean, Early Proterozoic and Late Archean ages. We can suppose, that the sources of Late Riphean detrital zircons from sandstones of the Chergilen and Allin formations are igneous rocks of gabbro-granitoids (940–933 Ma) and granite- leucogranites (804–789 Ma) association, identified in the Bureya continental Massif. We can`t assume, what kind of rocks were the source for Middle Riphean and older detrital zircons from the Cambrian sedimentary rocks of the Bureya continental Massif, because in this massif still do not identified complexes older Late Riphean age. The most probable geodynamic conditions of accumulation of the Cambrian deposits of the Mel’gin trough is the conditions of active continental margin, which is corresponding to of Early Cambrian granitoids magmatism.


1983 ◽  
Vol 72 (2) ◽  
pp. 715-731 ◽  
Author(s):  
Karsten Berg ◽  
Christoph Breitkreuz ◽  
Klaus -Werner Damm ◽  
Siegfried Pichowiak ◽  
Werner Zeil

Sign in / Sign up

Export Citation Format

Share Document