The effect of development on cortical auditory evoked potentials in normal hearing listeners and cochlear implant users

2016 ◽  
Author(s):  
Eun Kyung Jeon
2014 ◽  
Vol 155 (38) ◽  
pp. 1524-1529
Author(s):  
Ádám Bach ◽  
Ferenc Tóth ◽  
Vera Matievics ◽  
József Géza Kiss ◽  
József Jóri ◽  
...  

Introduction: Cortical auditory evoked potentials can provide objective information about the highest level of the auditory system. Aim: The purpose of the authors was to introduce a new tool, the “HEARLab” which can be routinely used in clinical practice for the measurement of the cortical auditory evoked potentials. In addition, they wanted to establish standards of the analyzed parameters in subjects with normal hearing. Method: 25 adults with normal hearing were tested with speech stimuli, and frequency specific examinations were performed utilizing pure tone stimuli. Results: The findings regarding the latency and amplitude analyses of the evoked potentials confirm previously published results of this novel method. Conclusions: The HEARLAb can be a great help when performance of the conventional audiological examinations is complicated. The examination can be performed in uncooperative subjects even in the presence of hearing aids. The test is frequency specific and does not require anesthesia. Orv. Hetil., 2014, 155(38), 1524–1529.


2015 ◽  
Vol 36 (6) ◽  
pp. 723-732 ◽  
Author(s):  
Carolyn J. Brown ◽  
Eun Kyung Jeon ◽  
Li-Kuei Chiou ◽  
Benjamin Kirby ◽  
Sue A. Karsten ◽  
...  

2003 ◽  
Vol 17 (4) ◽  
pp. 189-194 ◽  
Author(s):  
Sirkku K. Salo ◽  
A. Heikki Lang ◽  
Altti J. Salmivalli ◽  
Reijo K. Johansson ◽  
Maija S. Peltola

Abstract In this study, we examined the effect of contralateral masking on cortical auditory evoked potentials N1 (modal-specific slowly adapting component) and P2 at different masking intensities. N1 and P2 potentials were recorded from 15 subjects with normal hearing using 500Hz tone pips (intensity 65dB HL, duration 100ms, ISI 1s) presented to the right ear. Continuous white noise was delivered to the left ear at the intensities of 35, 50, 65, or 75dB effective masking level (EML), as well as a no-mask condition. The electrodes F3, Fz, F4, C3, Cz, C4, and Pz were used. The results show that N1 amplitude was significantly attenuated and, in contrast, P2 amplitude was significantly increased, with contralateral 75dB EML white noise. N1P2 peak to peak amplitude was not affected by masking, nor were the peak latencies. Thus, contralateral masking affects the exogenous cortical evoked N1 and P2 curves differently. We suggest that the effect is mediated by the efferent hearing system. The effect of ≤ 50dB EML contralateral white noise masking is so small that it should not affect clinical recordings.


2019 ◽  
Vol 28 (2S) ◽  
pp. 428-436
Author(s):  
Mohan Kumar Kalaiah ◽  
Sanjana Poovaiah ◽  
Usha Shastri

Purpose We investigated the utility of chained stimuli for threshold estimation using cortical auditory evoked potentials (CAEPs) in individuals with normal hearing sensitivity and hearing loss. The effect of the order of frequency in chained stimuli on CAEPs was also studied. Method Seventeen individuals with normal hearing and 17 individuals with mild to severe sensorineural hearing loss participated in the study. In individuals with normal hearing, CAEPs were recorded at 80 dB nHL for 4 chained stimuli with different orders of frequencies within them (Chained Stimuli 1 [CS1]: 500, 1000, 2000, 4000 Hz; Chained Stimuli 2: 4000, 2000, 1000, 500 Hz; Chained Stimuli 3: 500, 2000, 1000, 4000 Hz; Chained Stimuli 4: 4000, 1000, 2000, 500 Hz). CAEP threshold estimation was carried out using CS1 in both groups and was compared with behavioral pure-tone thresholds. Results CS1 elicited the largest amplitude responses at low and mid frequencies, whereas all 4 stimuli elicited similar amplitude responses at high frequencies. CAEP thresholds were generally within 10–20 dB above the participants' behavioral threshold in both groups. The difference between CAEP threshold and behavioral threshold was less for individuals with hearing loss compared to individuals with normal hearing. There was a significant positive correlation between CAEP threshold and behavioral threshold at all the frequencies. Conclusions CS1 could be used to elicit CAEPs for threshold estimation in adult participants with normal hearing and hearing loss of varied degrees with theoretically reduced testing time. The actual time reduction using chained stimuli and the correction factor to be applied to estimate behavioral threshold can be studied in future investigations.


2009 ◽  
Vol 20 (07) ◽  
pp. 397-408 ◽  
Author(s):  
Fawen Zhang ◽  
Ravi N. Samy ◽  
Jill M. Anderson ◽  
Lisa Houston

Background: It has been theorized that neural recovery is related to temporal coding of speech sounds. The recovery function of cortically generated auditory evoked potentials has not been investigated in cochlear implant (CI) users. Purpose: This study characterized the recovery function of the late auditory evoked potential (LAEP) using a masker–probe paradigm in postlingually deafened adult CI users and young normal-hearing (NH) listeners. Research Design: A case-control study of the late auditory evoked potentials using electrophysiological technique was performed. The LAEP was evoked by 1 kHz tone bursts presented in pairs, with the first stimuli as the maskers and the second stimuli as the probes. The masker–probe intervals (MPIs) were varied at 0.7, 1, 2, 4, and 8 sec, with an interpair interval of 12 sec. Study Sample: Nine CI users and nine NH listeners participated in this study. Data Collection and Analysis: The normalized amplitude from the probe response relative to the masker response was plotted as a function of the MPI to form a recovery function. The latency shift for the probe response relative to the masker response was calculated. Results: The recovery function was approximately linear in log scale of the MPI in NH listeners, while it showed somewhat different recovery patterns with a large intersubject variability in CI users. Specifically, although the probe response was approximately 60 percent of the masker response for the MPI of 0.7 sec in both groups, the recovery function of CI users displayed a nonlinear pattern, with a steeper slope than that of NH listeners. The probe response completely recovered at the MPI of 4 sec in NH listeners and at the MPI of 2 sec in CI users. N1 and P2 latencies from probe responses were shorter than those from masker responses in NH listeners, while no latency difference was found between probe responses and masker responses in CI users. Conclusions: Our interpretation of these findings is that the faster recovery of the LAEP in CI users is related to abnormal adaptation mechanisms and a less prominent role of the components with longer latencies in the LAEP of CI users. Other mechanisms such as the compromised inhibitory regulation in the auditory system and the aging effect in CI users might also play a role. More research needs to be done to determine whether the slope of the LAEP recovery function is correlated with speech-perception performance.


Sign in / Sign up

Export Citation Format

Share Document