scholarly journals Passive Target Tracking using Unscented Kalman Filter based on Monte Carlo Simulation

Author(s):  
K. Lova Raju ◽  
S. Koteswara Rao ◽  
Rudra Pratap Das ◽  
M. Nalini Santhosh ◽  
A. Sampath Dakshina Murthy
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M. Kavitha Lakshmi ◽  
S. Koteswara Rao ◽  
Kodukula Subrahmanyam

PurposeNowadays advancement in acoustic technology can be explored with marine assets. The purpose of the paper is pervasive computing underwater target tracking has aroused military and civilian interest as a key component of ocean exploration. While many pervasive techniques are currently found in the literature, there is little published research on the effectiveness of these paradigms in the target tracking context.Design/methodology/approachThe unscented Kalman filter (UKF) provides good results for bearing and elevation angles only tracking. Detailed methodology and mathematical modeling are carried out and used to analyze the performance of the filter based on the Monte Carlo simulation.FindingsDue to the intricacy of maritime surroundings, tracking underwater targets using acoustic signals, without knowing the range parameter is difficult. The intention is to find out the solution in terms of standard deviation in a three-dimensional (3D) space.Originality/valueA new method is found for the acceptance criteria for range, course, speed and pitch based on the standard deviation for bearing and elevation 3D target tracking using the unscented Kalman filter covariance matrix. In the Monte Carlo simulation, several scenarios are used and the results are shown.


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1088 ◽  
Author(s):  
Wasiq Ali ◽  
Yaan Li ◽  
Zhe Chen ◽  
Muhammad Asif Zahoor Raja ◽  
Nauman Ahmed ◽  
...  

In this paper, an application of spherical radial cubature Bayesian filtering and smoothing algorithms is presented to solve a typical underwater bearings only passive target tracking problem effectively. Generally, passive target tracking problems in the ocean environment are represented with the state-space model having linear system dynamics merged with nonlinear passive measurements, and the system is analyzed with nonlinear filtering algorithms. In the present scheme, an application of spherical radial cubature Bayesian filtering and smoothing is efficiently investigated for accurate state estimation of a far-field moving target in complex ocean environments. The nonlinear model of a Kalman filter based on a Spherical Radial Cubature Kalman Filter (SRCKF) and discrete-time Kalman smoother known as a Spherical Radial Cubature Rauch–Tung–Striebel (SRCRTS) smoother are applied for tracking the semi-curved and curved trajectory of a moving object. The worth of spherical radial cubature Bayesian filtering and smoothing algorithms is validated by comparing with a conventional Unscented Kalman Filter (UKF) and an Unscented Rauch–Tung–Striebel (URTS) smoother. Performance analysis of these techniques is performed for white Gaussian measured noise variations, which is a significant factor in passive target tracking, while the Bearings Only Tracking (BOT) technology is used for modeling of a passive target tracking framework. Simulations based experiments are executed for obtaining least Root Mean Square Error (RMSE) among a true and estimated position of a moving target at every time instant in Cartesian coordinates. Numerical results endorsed the validation of SRCKF and SRCRTS smoothers with better convergence and accuracy rates than that of UKF and URTS for each scenario of passive target tracking problem.


2021 ◽  
Vol 17 (3) ◽  
pp. 46-61
Author(s):  
Kausar Jahan ◽  
Sanagapallea Koteswara Rao

Using the recently proposed measure of nonlinearity (MoN), the authors try to find the magnitude of nonlinearity for passive target tracking with bearings-only measurements in underwater environment. The method derived to measure the nonlinearity is completely based on the state covariance matrices of the filters. It is tried to find the allowable magnitude of nonlinearity in terms of MoN with which a filter can perform to estimate the target motion parameters with required accuracy. In this paper, MoN values for different filters are computed for different scenarios. Results obtained in the Monte Carlo simulation are presented.


Sign in / Sign up

Export Citation Format

Share Document