array measurements
Recently Published Documents


TOTAL DOCUMENTS

345
(FIVE YEARS 73)

H-INDEX

27
(FIVE YEARS 3)

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 147
Author(s):  
Gianmarco Battista ◽  
Marcello Vanali ◽  
Paolo Chiariotti ◽  
Paolo Castellini

<p class="Abstract">Characterising the aeroacoustic noise sources generated by a rotating wind turbine blade provides useful information for tackling noise reduction of this mechanical system. In this context, microphone array measurements and acoustic source mapping techniques are powerful tools for the identification of aeroacoustic noise sources. This paper discusses a series of acoustic mapping strategies that can be exploited in this kind of applications. A single-blade rotor was tested in a semi-anechoic chamber using a circular microphone array. <br />The Virtual Rotating Array (VRA) approach, which transforms the signals acquired by the physical static array into signals of virtual microphones synchronously rotating with the blade, hence ensuring noise-source stationarity, was used to enable the use of frequency domain acoustic mapping techniques. A comparison among three different acoustic mapping methods is presented: Conventional Beamforming, CLEAN-SC and Covariance Matrix Fitting based on Iterative Re-weighted Least Squares and Bayesian approach. The latter demonstrated to provide the best results for the application and made it possible a detailed characterization of the noise sources generated by the rotating blade at different operating conditions.</p>


2021 ◽  
Vol 12 (1) ◽  
pp. 170
Author(s):  
Huey-Chu Huang ◽  
Tien-Han Shih ◽  
Cheng-Ta Hsu ◽  
Cheng-Feng Wu

Near-surface S-wave velocity structures (VS) are crucial in site-effect studies and ground-motion simulations or predictions. We explored S-wave velocity structures in Taichung, the second-largest city in Taiwan by population, by employing array measurements of microtremors at a total of 53 sites. First, the fundamental-mode dispersion curves of Rayleigh waves were estimated by adopting the frequency–wavenumber analysis method. Second, the surface-wave inversion technique was used to calculate the S-wave velocity structures of the area. At many sites, observed phase velocities were almost flat, with a phase velocity of approximately 800–1300 m/s in the frequency range of 0.6–2 Hz. A high-velocity zone (VS of 900–1500 m/s) with a convex shape was observed at the shallow S-wave structures of these sites (depths of 50–500 m). On the basis of the inversion results, we constructed two-dimensional and three-dimensional contour maps to elucidate the variations of VS structures in Taichung. According to VS-contour maps at different depths, lowest S-wave velocities are found at the western coastal plain, whereas highest S-wave velocities appear on the eastern side. The S-wave velocity gradually decreases from east to west. Moreover, the S-wave velocity of the Tertiary bedrock is assumed to be 1500 m/s in the area. According to the depth-contour map (VS = 1500 m/s), the depths of the bedrock range from 250 m (the eastern part) to 1550 m (the western part). The thicknesses of the alluvium gradually decrease from west to east. Our results are consistent with the geology of the Taichung area.


2021 ◽  
Vol 11 (22) ◽  
pp. 11058
Author(s):  
Abdelouahab Issaadi ◽  
Fethi Semmane ◽  
Abdelkrim Yelles-Chaouche ◽  
Juan José Galiana-Merino ◽  
Anis Mazari

In order to better assess the seismic hazard in the northern region of Algeria, the shear-wave velocity structure in the Middle-Chelif Basin is estimated using ambient vibration single-station and array measurements. The Middle-Chelif Basin is located in the central part of the Chelif Basin, the largest of the Neogene sedimentary basins in northern Algeria. This basin hosts the El-Asnam fault, one of the most important active faults in the Mediterranean area. In this seismically active region, most towns and villages are built on large unconsolidated sedimentary covers. Application of the horizontal-to-vertical spectral ratio (HVSR) technique at 164 sites, and frequency–wavenumber (F–K) analysis at 7 other sites, allowed for the estimation of the ground resonance frequencies, shear-wave velocity profiles, and sedimentary cover thicknesses. The electrical resistivity tomography method was used at some sites to further constrain the thickness of the superficial sedimentary layers. The soil resonance frequencies range from 0.75 Hz to 12 Hz and the maximum frequency peak amplitude is 6.2. The structure of the estimated shear-wave velocities is presented in some places as 2D profiles to help interpret the existing faults. The ambient vibration data allowed us to estimate the maximum depth in the Middle-Chelif Basin, which is 760 m near the city of El-Abadia.


2021 ◽  
Vol 182 ◽  
pp. 108247
Author(s):  
Lourenço Tércio Lima Pereira ◽  
Roberto Merino-Martínez ◽  
Daniele Ragni ◽  
David Gómez-Ariza ◽  
Mirjam Snellen

2021 ◽  
Vol 12 ◽  
Author(s):  
Maryl Lambros ◽  
Ximo Pechuan-Jorge ◽  
Daniel Biro ◽  
Kenny Ye ◽  
Aviv Bergman

Generalists and specialists are types of strategies individuals can employ that can evolve in fluctuating environments depending on the extremity and periodicity of the fluctuation. To evaluate whether the evolution of specialists or generalists occurs under environmental fluctuation regimes with different levels of periodicity, 24 populations of Escherichia coli underwent laboratory evolution with temperatures alternating between 15 and 43°C in three fluctuation regimes: two periodic regimes dependent on culture's cell density and one random (non-periodic) regime with no such dependency, serving as a control. To investigate contingencies on the genetic background, we seeded our experiment with two different strains. After the experiment, growth rate measurements at the two temperatures showed that the evolution of specialists was favored in the random regime, while generalists were favored in the periodic regimes. Whole genome sequencing demonstrated that several gene mutations were selected in parallel in the evolving populations with some dependency on the starting genetic background. Given the genes mutated, we hypothesized that the driving force behind the observed adaptations is the restoration of the internal physiology of the starting strains' unstressed states at 37°C, which may be a means of improving fitness in the new environments. Phenotypic array measurements supported our hypothesis by demonstrating a tendency of the phenotypic response of the evolved strains to move closer to the starting strains' response at the optimum of 37°C, especially for strains classified as generalists.


2021 ◽  
Vol 26 (3) ◽  
pp. 248-258
Author(s):  
Odenir de Almeida ◽  
Fernando M. Catalano ◽  
Lourenco Tercio Pereira

For achieving accurate aeroacoustic measurements to the aircraft industry, a low-speed wind tunnel, primarily designed for aerodynamic testing, is modified to provide lower background noise environment. Based on data from single microphone at different wind tunnel locations and microphone phased-array measurements inside the test-section, the main noise sources are identified and feasible alternatives are implemented for reducing the background noise such as new acoustically treated corner-vanes and sidewall lining located upstream the drive system. The acoustically transparent concept for the test-section is also investigated showing promising results for further improvements in the wind tunnel. Results are presented for sound pressure levels from single microphone measurements at different locations in the wind tunnel as well as from the beamforming array inside the test-section. Background noise measurements before and after improvements confirm that the ability of performing aeroacoustic tests has significantly increased with noise reduction of 5 dB inside the test-section.


Sign in / Sign up

Export Citation Format

Share Document