scholarly journals An Efficient Clustering Approach using Hybrid Swarm Intelligence based Artificial Bee Colony- Firefly Algorithm

Author(s):  
S. Karthikeyan ◽  
E. J. Thomson Fredrik
2014 ◽  
Vol 951 ◽  
pp. 239-244 ◽  
Author(s):  
Xiao Qiang Xu ◽  
De Ming Lei

The lot streaming (LS) problem in job shop with equal-size sub-lots and intermittent idling is considered. An effective swarm intelligence algorithm with an artificial bee colony (ABC) algorithm is proposed for the minimization of total penalties of tardiness and earliness. In the first period of ABC, the employed bee phase and the onlooker bee phase are both for lot/sub-lot scheduling. In the second period, the LS conditions are determined in the employed bee phase and the lot/sub-lot is scheduled in the onlooker phase. The worst solution of the swarm is replaced with the elite one every few cycles. Computational results show the promising advantage of ABC.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Amnat Panniem ◽  
Pikul Puphasuk

Artificial Bee Colony (ABC) algorithm is one of the efficient nature-inspired optimization algorithms for solving continuous problems. It has no sensitive control parameters and has been shown to be competitive with other well-known algorithms. However, the slow convergence, premature convergence, and being trapped within the local solutions may occur during the search. In this paper, we propose a new Modified Artificial Bee Colony (MABC) algorithm to overcome these problems. All phases of ABC are determined for improving the exploration and exploitation processes. We use a new search equation in employed bee phase, increase the probabilities for onlooker bees to find better positions, and replace some worst positions by the new ones in onlooker bee phase. Moreover, we use the Firefly algorithm strategy to generate a new position replacing an unupdated position in scout bee phase. Its performance is tested on selected benchmark functions. Experimental results show that MABC is more effective than ABC and some other modifications of ABC.


Author(s):  
MD. SHAFIUL ALAM ◽  
MD. MONIRUL ISLAM ◽  
KAZUYUKI MURASE

The Artificial Bee Colony (ABC) algorithm is a recently introduced swarm intelligence algorithm that has been successfully applied on numerous and diverse optimization problems. However, one major problem with ABC is its premature convergence to local optima, which often originates from its insufficient degree of explorative search capability. This paper introduces ABC with Improved Explorations (ABC-IX), a novel algorithm that modifies both the selection and perturbation operations of the basic ABC algorithm in an explorative way. First, an explorative selection scheme based on simulated annealing allows ABC-IX to probabilistically accept both better and worse candidate solutions, whereas the basic ABC can accept better solutions only. Second, a self-adaptive strategy enables ABC-IX to automatically adapt the perturbation rate, separately for each candidate solution, to customize the degree of explorations and exploitations around it. ABC-IX is evaluated on several benchmark numerical optimization problems and results are compared with a number of state-of-the-art evolutionary and swarm intelligence algorithms. Results show that ABC-IX often performs better optimization than most other algorithms in comparison on most of the problems.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Quande Qin ◽  
Shi Cheng ◽  
Qingyu Zhang ◽  
Li Li ◽  
Yuhui Shi

Artificial bee colony (ABC) is one of the newest additions to the class of swarm intelligence. ABC algorithm has been shown to be competitive with some other population-based algorithms. However, there is still an insufficiency that ABC is good at exploration but poor at exploitation. To make a proper balance between these two conflictive factors, this paper proposed a novel ABC variant with a time-varying strategy where the ratio between the number of employed bees and the number of onlooker bees varies with time. The linear and nonlinear time-varying strategies can be incorporated into the basic ABC algorithm, yielding ABC-LTVS and ABC-NTVS algorithms, respectively. The effects of the added parameters in the two new ABC algorithms are also studied through solving some representative benchmark functions. The proposed ABC algorithm is a simple and easy modification to the structure of the basic ABC algorithm. Moreover, the proposed approach is general and can be incorporated in other ABC variants. A set of 21 benchmark functions in 30 and 50 dimensions are utilized in the experimental studies. The experimental results show the effectiveness of the proposed time-varying strategy.


Author(s):  
Г.В. Худов ◽  
І.А. Хижняк

The article discusses the methods of swarm intelligence, namely, an improved method based on the ant colony optimization and the method of an artificial bee colony. The goal of the work is to carry out a comparative assessment of the optical-electronic images segmentation quality by the ant colony optimization and the artificial bee colony. Segmentation of tonal optical-electronic images was carried out using the proposed methods of swarm intelligence. The results of the segmentation of optical-electronic images obtained from the spacecraft are presented. A visual assessment of the quality of segmentation results was carried out using improved methods. The classical errors of the first and second kind of segmentation of optoelectronic images are calculated for the proposed methods of swarm intelligence and for known segmentation methods. The features of using each of the proposed methods of swarm intelligence are determined. The tasks for which it is better to use each of the proposed methods of swarm intelligence are determined.


2016 ◽  
Vol 12 (11) ◽  
pp. 4515-4522
Author(s):  
K. Deepa ◽  
C. Vivek ◽  
S.Palanivel Rajan

A deduplication process uses similarity function to identify the two entries are duplicate or not by setting the threshold.  This threshold setting is an important issue to achieve more accuracy and it relies more on human intervention. Swarm Intelligence algorithm such as PSO and ABC have been used for automatic detection of threshold to find the duplicate records. Though the algorithms performed well there is still an insufficiency regarding the solution search equation, which is used to generate new candidate solutions based on the information of previous solutions.  The proposed work addressed two problems: first to find the optimal equation using Genetic Algorithm(GA) and next it adopts an modified  Artificial Bee Colony (ABC) to get the optimal threshold to detect the duplicate records more accurately and also it reduces human intervention. CORA dataset is considered to analyze the proposed algorithm.


2020 ◽  
Author(s):  
Juan F. Farfán ◽  
Luís Cea

<p>Hydrological models are widely used for flood forecasting, continuous streamflow simulation and water resources management. The success of a hydrological model depends on different factors such as its formulation, data availability and parameter optimization. There are many approaches to identify the optimal parameter sets, which can be categorized in 1) Local search methods and 2) Global search methods. In the group of global search methods, swarm intelligence could provide an alternative to improve the application of surrogate models and to provide robust calibration. In the present study we evaluate the latter approach using a physically-based lumped model applied to 10 years of hydrologic data divided in 3 periods: 1) five years for calibration, 2) three years for validation (both statistically similar), and 3) two years for prediction. The prediction period is statistically non-similar to the calibration and validation periods. A Montecarlo simulation with 1000 parameter sets is run, and 4 goodness-of-fit coefficients are calculated for each parameter set in the calibration period: Nash-Sutcliffe Efficiency (NSE), adapted for peaks Nash-Sutcliffe Efficiency (ANSE), Kling & Gupta Efficiency (KGE), and adapted for peaks Kling & Gupta Efficiency (AKGE) coefficients. The parameter sets and its correspondent goodness-of-fit coefficients are configured as the training set of an artificial neural network surrogate model in order to generate a simulated solution space. Once the surrogate model is trained, a swarm intelligence-based approach is adapted in order to search in the simulated space. The swarm intelligence-based approach consists on an adaptation of the Artificial Bee Colony algorithm (ABC), which introduces a random variation in a parameter randomly selected in order to evaluate if there is any improvement in the goodness-of-fit values. The adaptation includes criteria to count improvements and non-improvements in the goodness-of-fit values to stop the search of solutions and a threshold criterion for selection of parameter sets. Only those sets that are above the threshold of the goodness-of-fit coefficients are selected to apply the swarm intelligence-based method.</p><p>The obtained parameter sets are evaluated with the hydrological model in order to calculate the goodness-of-fit values in the three stages (calibration, validation and prediction). In this step, those sets that provide wrong simulations are used as samples to update the neural network surrogate model for a new search iteration, and those that provide higher goodness-of-fit coefficients are saved.  Preliminary results show that this technique can provide a boost on the optimization problem with improvement ratios between 1.08 and 1.27 in the goodness-of-fit coefficients. Moreover, the parameter sets found applying this technique outperform those obtained with a local search method, especially in validation and prediction stages. Specifically, in the prediction stage, NSE of 0.77 and ANSE of 0.83 were obtained against NSE of 0.45 and ANSE of 0.57 for the local search parameter set.</p><p><strong>Keywords:</strong> Artificial neural networks, artificial bee colony, surrogate modelling-based methods, global search methods, swarm intelligence.</p>


Sign in / Sign up

Export Citation Format

Share Document