Adult human small intestine cell dissociation (on ice) v5 (protocols.io.q7cdziw)

protocols.io ◽  
2018 ◽  
Author(s):  
Andrew Potter
2021 ◽  
Author(s):  
Joseph Burclaff ◽  
R. Jarrett Bliton ◽  
Keith A Breau ◽  
Meryem T Ok ◽  
Ismael Gomez-Martinez ◽  
...  

Background and Aims: Single-cell transcriptomics offer unprecedented resolution of tissue function at the cellular level, yet studies in healthy adult human small intestine and colon are sparse. Here, we present single-cell transcriptomics from 3 humans covering the duodenum, jejunum, ileum, and ascending, transverse, and descending colon. Methods: 12,590 single epithelial cells from three independently processed organ donors were evaluated for organ-specific lineage biomarkers, differentially regulated genes, receptors, and drug targets. Analyses focused on intrinsic cell properties and capacity for response to extrinsic signals along the gut axis across different humans. Results: Cells were assigned to 25 epithelial lineage clusters. Human intestinal stem cells (ISCs) are not specifically marked by many murine ISC markers. Lysozyme expression is not unique to Paneth cells (PCs), and PCs lack expression of expected niche-factors. BEST4 cells express NPY and show functional and maturational differences between SI and colon. Tuft cells possess a broad ability to interact with the innate and adaptive immune systems through previously unreported receptors. Some classes of mucins, hormones, cell-junction, and nutrient absorption genes show unappreciated regional expression differences across lineages. Differential expression of receptors and drug targets across lineages reveals biological variation and potential for variegated responses. Conclusions: Our study identifies novel lineage marker genes; covers regional differences; shows important differences between mouse and human gut epithelium; and reveals insight into how the epithelium responds to the environment and drugs. This comprehensive cell atlas of the healthy adult human intestinal epithelium resolves data gaps in anatomical regions along the gastrointestinal tract and advances our understanding of human intestinal physiology.


2006 ◽  
Vol 176 (9) ◽  
pp. 5199-5204 ◽  
Author(s):  
Lydia Lynch ◽  
Diarmuid O’Donoghue ◽  
Jonathan Dean ◽  
Jacintha O’Sullivan ◽  
Cliona O’Farrelly ◽  
...  

2007 ◽  
Vol 236 (7) ◽  
pp. 1980-1990 ◽  
Author(s):  
Inga C. Teller ◽  
Joëlle Auclair ◽  
Elizabeth Herring ◽  
Rémy Gauthier ◽  
Daniel Ménard ◽  
...  

Author(s):  
A. J. Tousimis

The elemental composition of amino acids is similar to that of the major structural components of the epithelial cells of the small intestine and other tissues. Therefore, their subcellular localization and concentration measurements are not possible by x-ray microanalysis. Radioactive isotope labeling: I131-tyrosine, Se75-methionine and S35-methionine have been successfully employed in numerous absorption and transport studies. The latter two have been utilized both in vitro and vivo, with similar results in the hamster and human small intestine. Non-radioactive Selenomethionine, since its absorption/transport behavior is assumed to be the same as that of Se75- methionine and S75-methionine could serve as a compound tracer for this amino acid.


JAMA ◽  
1966 ◽  
Vol 196 (13) ◽  
pp. 1125-1127 ◽  
Author(s):  
G. H. Bornside

1994 ◽  
Vol 8 (4) ◽  
Author(s):  
P. Marteau ◽  
M. F. Gerhardt ◽  
A. Myara ◽  
E. Bouvier ◽  
F. Trivin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document