zinc transporters
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 51)

H-INDEX

47
(FIVE YEARS 4)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 139
Author(s):  
Stephanie MacKenzie ◽  
Andreas Bergdahl

Oxidative stress represents an impaired metabolic system that promotes damage to cells and tissues. This is the predominant factor that leads to the development and progression of diabetes and diabetic complications. Research has indicated that zinc plays a consequential mechanistic role in the protection against oxidative stress as zinc is required for the proper functioning of the antioxidant system, the suppression of inflammatory mediators, and the modulation of zinc transporters. Recently, the mechanisms surrounding ZnT8, ZIP7, and metallothionein have shown to be of particular pathogenic importance and are considered as potential therapeutic targets in disease management. The literature has shown that zinc dysregulation is associated with diabetes and may be considered as a leading contributor to the deleterious vascular alterations exhibited by the disease. Although further investigation is required, studies have indicated the favorable use of zinc supplementation in the protection against and prevention of oxidative stress and its consequences over the course of the condition. This review aims to provide a comprehensive account of zinc homeostasis, the oxidative mechanisms governed by zinc status, current therapeutic targets, and the impact of zinc supplementation in the prevention of disease onset and in mitigating vascular complications.


Author(s):  
Takafumi Hara ◽  
Emi Yoshigai ◽  
Takuto Ohashi ◽  
Toshiyuki Fukada

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Judith Behnsen ◽  
Hui Zhi ◽  
Allegra T. Aron ◽  
Vivekanandan Subramanian ◽  
William Santus ◽  
...  

AbstractZinc is an essential cofactor for bacterial metabolism, and many Enterobacteriaceae express the zinc transporters ZnuABC and ZupT to acquire this metal in the host. However, the probiotic bacterium Escherichia coli Nissle 1917 (or “Nissle”) exhibits appreciable growth in zinc-limited media even when these transporters are deleted. Here, we show that Nissle utilizes the siderophore yersiniabactin as a zincophore, enabling Nissle to grow in zinc-limited media, to tolerate calprotectin-mediated zinc sequestration, and to thrive in the inflamed gut. We also show that yersiniabactin’s affinity for iron or zinc changes in a pH-dependent manner, with increased relative zinc binding as the pH increases. Thus, our results indicate that siderophore metal affinity can be influenced by the local environment and reveal a mechanism of zinc acquisition available to commensal and pathogenic Enterobacteriaceae.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12314
Author(s):  
Ceylan V. Bitirim

Identification of the key processes involved in the tumor progression, malignancy and the molecular factors which are responsible for the transition of the cirrhotic cells to the tumor cells, contribute to the detection of biomarkers for diagnosis of hepatocellular carcinoma (HCC) at an early stage. According to clinical data, HCC is mostly characterized by a significant decrease in zinc levels. It is strongly implied that zinc deficiency is the major event required in the early stages of tumor formation and development of malignancy. Due to this reason, the definition of the molecular players which have a role in zinc homeostasis and cellular zinc level could give us a clue about the transition state of the cirrhosis to hepatic tumor formation. Despite the well-known implications of zinc in the development of HCCthe correlation of the expression of zinc transporter proteins with tumor progression and malignancy remain largely unknown. In the present study, we evaluated in detail the relationship of zinc deficiency on the prognosis of early HCC patients. In this study, we aimed to test the potential zinc transporters which contribute tothe transformation of cirrhosis to HCCand the progression of HCC. Among the 24 zinc transporter proteins, the proteins to be examined were chosen by using Gene Expression Profiling Interactive Analysis (GEPIA) webpage and RNA-seq analysis using TCGA database. ZIP14 and ZIP5 transporters were found as common differentially expressed genes from both bioinformatic analyses. ZnT1, ZnT7 and ZIP7 transporters have been associated with tumor progression. Relative abundance of ZnT1, ZIP5 and ZIP14 protein level was determined by immunohistochemistry (IHC) in surgically resected liver specimens from 16 HCC patients at different stages. IHC staining intensity was analyzed by using ImageJ software and scored with the histological scoring (H-score) method. The staining of ZnT1 was significantly higher in Grade III comparing to Grade II and Grade I. On the contrary, ZIP14 staining decreased almost 10-foldcomparing to Grade Iand Grade II. ZIP5 staining was detected almost 2-fold higher in cirrhosis than HCC. But ZnT1 staining was observed almost 3-fold lower in cirrhosis comparing to HCC. Intracellular free zinc level was measured by flow cytometry in Hep40 and Snu398 cells using FluoZin-3 dye. The intracellular free zinc level was almost 9-fold decreased in poor differentiated Snu398 HCC cells comparing to well differentiated Hep40 HCC cells.This report establishes for the first time the correlation between the expression pattern of ZIP14, ZnT1 and ZIP5 and significant zinc deficiency which occurs concurrently with the advancing of malignancy. Our results provide new molecular insight into ZnT1, ZIP14 and ZIP5 mediated regulation of cellular zinc homeostasis and indicate that zinc transporters might be important factors and events in HCC malignancy, which can lead to the development of early biomarkers.


2021 ◽  
Author(s):  
Adelita D Mendoza ◽  
Nicholas Dietrich ◽  
Chieh-Hsiang Tan ◽  
Daniel E. Herrera ◽  
Jennysue Kasiah ◽  
...  

Lysosome-related organelles play evolutionarily conserved roles in zinc storage, but mechanisms that control zinc flow in and out are not well understood. In C. elegans intestinal cells, the CDF-2 transporter stores zinc in these organelles during excess. Here we identify ZIPT-2.3 as the transporter that releases zinc during deficiency. The expression levels of CDF-2 and ZIPT-2.3 are reciprocally regulated in zinc excess and deficiency, establishing a fundamental mechanism of homeostasis. Super-resolution microscopy demonstrated these organelles are composed of a spherical acidified compartment and a hemispherical expansion compartment. The expansion compartment inflates during zinc excess and deficiency by vesicle fusion delivering zinc transporters. These results identify an unexpected structural feature of lysosome-related organelles that facilitates rapid transitions in the composition of zinc transporters to mediate homeostasis.


2021 ◽  
Author(s):  
Xinye Zhu ◽  
Chengxuan Yu ◽  
Wangshu Wu ◽  
Lei Shi ◽  
Chenyi Jiang ◽  
...  

Abstract Background: Overwhelming evidences now suggest oxidative stress is a major cause of sperm dysfunction and male infertility. Zinc is an important non-enzyme antioxidant with a wide range of biological functions and plays a significant role in preserving male fertility. Notably, zinc trafficking through the cellular and intracellular membrane is endorsed by precise families of zinc transporters, i.e. SLC39s/ZIPs and SLC30s/ZnTs. However, the expression and function of zinc transporters in the male germ cells were rarely reported. The aim of this study is to determine the crucial zinc transporter responsible for the maintenance of spermatogenesis.Methods: In the present study, we investigated the expression of all fourteen ZIP members in mouse testis and further analyzed the characteristic of ZIP12 expression in testis and spermatozoa by qRT-PCR, immunoblot and immunohistochemistry analyses. To explore the antioxidant role of ZIP12 in spermatogenesis, an obese mouse model fed with high-fat-diet was employed to confirm the correlation between ZIP12 expression level and sperm quality. Furthermore, ZIP12 expression in response to oxidative stress in a spermatogonia cell line, C18-4 cells, was determined and its function involved in regulating cell viability and apoptosis was investigated by RNAi experiment. Results: We initially found that ZIP12 expression in mouse testis was significantly high compared to other members of ZIPs and its mRNA and protein were intensively expressed in testis rather than the other tissues. Importantly, ZIP12 was intensively abundant in spermatogonia and spermatozoa, both in mice and humans. Moreover, ZIP12 expression in testis significantly decreased in obese mice, which associated with reduced sperm zinc content, excessive sperm ROS, poor sperm quality and male subfertility. Similarly, its expression in C18-4 cells significantly declined in response to oxidative stress. Additionally, reduced ZIP12 expression by RNAi associated with a decline in zinc level subsequently caused low cell viability and high cell apoptosis in C18-4 cells. Conclusions: The zinc transporter ZIP12 is intensively expressed in testis, especially in spermatogonia and spermatozoa. ZIP12 may play a key role in maintaining intracellular zinc level in spermatogonia and spermatozoa, by which it resists oxidative stress during spermatogenesis and therefore preserves male fertility.


2021 ◽  
Author(s):  
Mengyue Lv ◽  
Dan Cao ◽  
Liwen Zhang ◽  
Chi Hu ◽  
Shukai Li ◽  
...  

Author(s):  
Xinxin Cheng ◽  
Jie Wang ◽  
Chunling Liu ◽  
Tianduo Jiang ◽  
Ningzhi Yang ◽  
...  

Abstract Background Zinc transporters have been found to be associated with the pathogenesis of numerous human diseases including cancer. As the most lethal gynecologic malignancy, ovarian cancer is characterized by rapid progression and widespread metastases. However, the function and underlying mechanism of zinc transporters in ovarian cancer metastasis remain unclear. Methods The relationship between zinc transporter gene expressions and clinical outcomes of ovarian cancer was assessed with the online database Kaplan-Meier plotter (http://kmplot.com/analysis/). Immunohistochemistry was performed to investigate the prognostic importance of ZIP13. The expression of ZIP13 in ovarian cancer cell lines was depleted to explore its effect on proliferation, adhesion, migration, and invasion both in vitro and in vivo assays. RNA-Seq, quantitative RT-PCR, and western blot analysis were performed to explore ZIP13-regulated downstream target genes. Results The expressions of several zinc transporters were highly associated the clinical outcomes of ovarian cancer patients. Among them, high ZIP13 expression was an independent prognostic factor for poor survival in patients with ovarian cancer. ZIP13 knockout suppressed the malignant phenotypes of ovarian cancer cells both in vitro and in vivo. Further investigation revealed that ZIP13 regulated intracellular zinc distribution and then affected the expressions of genes involved in extracellular matrix organization and cytokine-mediated signaling pathway. This led to the activation of Src/FAK pathway with increased expressions of pro-metastatic genes but decreased expressions of tumor suppressor genes. Conclusions ZIP13 is shown to be a novel driver of metastatic progression by modulating the Src/FAK signaling pathway, which may serve as a promising biomarker for prognostic evaluation and targeted therapy in ovarian cancer.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 325-325
Author(s):  
Tariful Islam ◽  
Geetika Katasani ◽  
Iurii Koboziev ◽  
Kembra Albracht-Schulte ◽  
Shane Scoggin ◽  
...  

Abstract Objectives Obesity is a complex metabolic disease, that is often associated with non-alcoholic fatty liver disease (NAFLD). Inflammation is a common feature of both diseases. Curcumin, a traditionally used spice in Asia, exerts anti-inflammatory effects in liver and white adipose tissue (WAT) of diet-induced obese (DIO) mice. However, mechanisms involved in these beneficial effects remain obscure. Zinc is an important micronutrient involved in inflammatory responses. Whole-body zinc homeostasis plays a critical role in decreasing tissue specific inflammation. Zinc homeostasis is maintained mainly by zinc transporters known as ZnT (zinc transporters) and Zip (Zrt and Irt-like proteins) family. We propose that zinc transporters may contribute to curcumin's protective metabolic effects. Thus, the objective of this research was to determine curcumin's effects on inflammatory markers and zinc transporters in liver and WAT from DIO mice. Methods Male B6 mice were fed a HFD (45% kcal fat) or HFD supplemented with 0.4% (w/w) curcumin (HFC) for fourteen weeks. Serum triglycerides (TG) and free fatty acid (FFA) levels were measured. mRNA levels for inflammatory markers and zinc transporters were determined in WAT and liver by qRT-PCR. Results No significant changes were observed in body weight, serum TG and FFA levels with curcumin supplementation. However, gene expression of inflammatory markers, including Stat1, and Nf-KB subunit p65 were significantly reduced in liver and WAT from HFC group compared to HF (P < 0.05). Furthermore, curcumin reduced hepatic zinc transporters Zip10, Zip14, ZnT10 but increased ZnT9 expression. In WAT, curcumin significantly reduced mRNA levels for Zip1, Zip14, ZnT1, and ZnT7 (P < 0.05). Conclusions Our results indicate that zinc transporters may in part mediate the anti-inflammatory properties of curcumin, particularly Zip14, in WAT and liver of DIO mice. Future mechanistic studies are necessary to establish whether zinc transporters are required for curcumin's anti-inflammatory effects in obesity and associated NAFLD. Funding Sources AHA grant# 19AIREA34450279.


2021 ◽  
Vol 141 (5) ◽  
pp. 695-703
Author(s):  
Seiichiro Himeno ◽  
Hitomi Fujishiro
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document