scholarly journals Control Scheme for Islanded Operation of Distributed Energy Resource

Author(s):  
Athira M. Thomas ◽  
Smitha S. D. ◽  
Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3299 ◽  
Author(s):  
Yan Xia ◽  
Yuchen Dai ◽  
Wenxu Yan ◽  
Dezhi Xu ◽  
Chengshun Yang

In this paper, an adaptive observer based data driven control scheme is proposed for the voltage control of dispatchable distributed energy resource (DER) systems which work in islanded operation. In the design procedure of the proposed control scheme, we utilize the novel transformation and linearization technique for the islanded DER system dynamics, which is proper for the proposed data driven control algorithm. Moreover, the pseudo partial derivative (PPD) parameter matrix can be estimated online by multiple adaptive observers. Then, the adaptive constrained controller is designed only based on the online identification results derived from the input/output (I/O) data of the controlled DER system. It is theoretically proven that all the signals in the closed-loop control system are uniformly ultimately bounded based on the Lyapunov stability analysis approach. In addition, the results of the simulation comparison are given to verify the voltage control effect of the proposed control scheme.


2019 ◽  
Author(s):  
Kelsey A Horowitz ◽  
Zachary Peterson ◽  
Michael H Coddington ◽  
Fei Ding ◽  
Benjamin O Sigrin ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2773
Author(s):  
Petros Siritoglou ◽  
Giovanna Oriti ◽  
Douglas L. Van Bossuyt

This paper presents a user-friendly design method for accurately sizing the distributed energy resources of a stand-alone microgrid to meet the critical load demands of a military, commercial, industrial, or residential facility when utility power is not available. The microgrid combines renewable resources such as photovoltaics (PV) with an energy-storage system to increase energy security for facilities with critical loads. The design method’s novelty complies with IEEE Standards 1562 and 1013, and addresses resilience, which is not taken into account in existing design methods. Several case studies simulated with a physics-based model validate the proposed design method and demonstrate how resilience can be included in the design process. Additionally, the design and the simulations were validated by 24 h laboratory experiments conducted on a microgrid assembled using commercial off-the-shelf components.


Sign in / Sign up

Export Citation Format

Share Document