hybrid control scheme
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Vol 54 (9-10) ◽  
pp. 1356-1370
Author(s):  
Muhammad Abdullah ◽  
Arslan Ahmed Amin ◽  
Sajid Iqbal ◽  
Khalid Mahmood-ul-Hasan

Rotary Inverted Pendulum (RIP) mimics the behavior of many practical control systems like crane mechanism, segway, unicycle robot, traction control in vehicles, rocket stabilization, and launching. RIP is a fourth-order nonlinear open-loop unstable dynamical system and is widely used for testing the effectiveness of the newly developed control algorithms. In this paper, a Hybrid Control Scheme (HCS) based on energy balance and fuzzy logic controllers is proposed to implement the swing up and stabilization control of RIP. In the proposed control scheme, the fuzzy logic-based state feedback gains are dynamically tuned in real-time by minimizing the absolute error between the desired and actual states to get robust control performance. The proposed HCS is also compared with the conventional Linear Quadratic Controller (LQR) for this application. The comparative results show that the proposed fuzzy logic-based hybrid control scheme gives the optimal control performance in terms of achieving satisfactory transient, steady-state, and robust responses from a given RIP system, as compared to the conventional LQR based control scheme. The proposed control scheme is also relatively less complex with a low computational cost and provides desired response characteristics as compared to the existing ones in the literature.


2021 ◽  
Vol 12 (2) ◽  
pp. 735-749
Author(s):  
Guiying Wang ◽  
Xigui Wang ◽  
Yongmei Wang ◽  
Baixue Fu

Abstract. In this research, an electrohydraulic servo four-legged heavy-duty (FLHD) robot has been designed and developed. The study proposes an integration layout cylinder design scheme for a non-lightweight hydraulic servo four-legged robot with high loads and torques of hip joint and derives the mathematical element analysis model for a parallel-executed cylinder (PEC) system. The multiple inherent characteristics of the PEC integration system model are explored further. Based on the controllable functional requirements of interconnected joints, and to weaken the influence of internal force coupling, a force–position hybrid control scheme for the PEC is designed, and the force–position signal module design unit is used to solve the force–position hybrid control in reverse. Considering the inherent requirements of the servo-executed cylinder (SEC) force control unit module (CUM), the implementation process of magnetic flux compensation and speed compensation is discussed in detail. The minimum amplitude controller is applied to the SEC force CUM, and the proportional integrated controller has been determined in the SEC position CUM. A compound control strategy proposed in this paper is verified on a parallel hydraulic servo platform. The experimental verification results reveal that the values of position/force attenuation amplitude and lag phase are not greater than 9 % and 18∘, respectively. The feasibility of the interconnected implementation of the hybrid control scheme proposed in this paper is further increased. The conclusions of this research will be useful for application in fields of four-legged heavy-load (FLHL) robot control systems.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4563
Author(s):  
Muhammad Ali ◽  
Ghulam Hafeez ◽  
Ajmal Farooq ◽  
Zeeshan Shafiq ◽  
Faheem Ali ◽  
...  

This paper proposes a hybrid control scheme for a newly devised hybrid multilevel inverter (HMLI) topology. The circuit configuration of HMLI is comprised of a cascaded converter module (CCM), connected in series with an H-bridge converter. Initially, a finite set model predictive control (FS-MPC) is adopted as a control scheme, and theoretical analysis is carried out in MATLAB/Simulink. Later, in the real-time implementation of the HMLI topology, a hybrid control scheme which is a variant of the FS-MPC method has been proposed. The proposed control method is computationally efficient and therefore has been employed to the HMLI topology to mitigate the high-frequency switching limitation of the conventional MPC. Moreover, a comparative analysis is carried to illustrate the advantages of the proposed work that includes low switching losses, higher efficiency, and improved total harmonic distortion (THD) in output current. The inverter topology and stability of the proposed control method have been validated through simulation results in MATLAB/Simulink environment. Experimental results via low-voltage laboratory prototype have been added and compared to realize the study in practice.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1142
Author(s):  
Han Huang ◽  
Senthooran Balasubramaniam ◽  
Grazia Todeschini ◽  
Surya Santoso

Electric vehicle (EV) charging stations fed by photovoltaic (PV) panels allow integration of various low-carbon technologies, and are gaining increasing attention as a mean to locally manage power generation and demand. This paper presents novel control schemes to improve coordination of an islanded PV-fed DC bus EV charging system during various disturbances, including rapid changes of irradiance, EV connection and disconnection, or energy storage unit (ESU) charging and discharging. A new hybrid control scheme combining the advantages of both master–slave control and droop control is proposed for a charging station supplying 20 EVs for a total power of 890 kW. In addition, a three-level (3L) boost converter with capacitor voltage balance control is designed for PV generation, with the aim to provide high voltage gain while employing a small inductor. The control techniques are implemented in a simulation environment. Various case studies are presented and analysed, confirming the effectiveness and stability of the control strategies proposed for the islanded charging system. For all tested conditions, the operating voltage is maintained within 5% of the rated value.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 464
Author(s):  
Chao-Tsung Ma ◽  
Zhen-Huang Gu

The modern trend of decarbonization has encouraged intensive research on renewable energy (RE)-based distributed power generation (DG) and smart grid, where advanced electronic power interfaces are necessary for connecting the generator with power grids and various electrical systems. On the other hand, modern technologies such as Industry 4.0 and electrical vehicles (EV) have higher requirements for power converters than that of conventional applications. Consequently, the enhancement of power interfaces will play an important role in the future power generation and distribution systems as well as various industrial applications. It has been discovered that wide-bandgap (WBG) switching devices such as gallium nitride (GaN) high electron mobility transistors (HEMTs) and silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) offer considerable potential for outperforming conventional silicon (Si) switching devices in terms of breakdown voltage, high temperature capability, switching speed, and conduction losses. This paper investigates the performance of a 2kVA three-phase static synchronous compensator (STATCOM) based on a GaN HEMTs-based voltage-source inverter (VSI) and a neural network-based hybrid control scheme. The proportional-integral (PI) controllers along with a radial basis function neural network (RBFNN) controller for fast reactive power control are designed in synchronous reference frame (SRF). Both simulation and hardware implementation are conducted. Results confirm that the proposed RBFNN assisted hybrid control scheme yields excellent dynamic performance in terms of various reactive power tracking control of the GaN HEMTs-based three-phase STATCOM system.


Author(s):  
Nura Musa Tahir ◽  
Mustapha Muhammad ◽  
Bashir Bala Muhammad ◽  
Haliru Liman ◽  
Aminu Yahaya Zimit ◽  
...  

<span>Precise hub angle positioning due to tip deflections, flexible motions and under various payloads is enormous tasks in the control of single-link flexible manipulators. In this paper, output-based command shaping (OBCS) was designed using the system output for tip deflections and residuals vibrations suppression, and this was incorporated with a linear matrix inequality (LMI) closed-loop control scheme for precise hub angle positioning.  The robustness of the hybrid control scheme was tested by changing the payloads from 0g to 30g, and 50g. Simulation results showed that endpoint residuals vibrations and tip deflections due to flexible motions were suppressed and hence precise hub angle positioning under various payloads was achieved. Integral absolute error (IAE), Integral square error (ISE) and Time response analysis (TRA) were used as the performance indexes. Hence, the hybrid control scheme is simple and robust.</span>


Sign in / Sign up

Export Citation Format

Share Document