scholarly journals Amplification of Modulated Waves in Magnetoactive Semiconductor Plasmas

Author(s):  
Anita Sangwan ◽  
Navneet Singh ◽  
2002 ◽  
Vol 41 (6) ◽  
pp. 1098 ◽  
Author(s):  
Frank V. Kowalski ◽  
Josh Buhl ◽  
Ben McMahon

1963 ◽  
Vol 41 (10) ◽  
pp. 1702-1711 ◽  
Author(s):  
Mahendra Singh Sodha ◽  
Carl J. Palumbo

In this communication the authors have obtained an expression for current density in a slightly ionized uniform plasma in the presence of a number of electric fields of different frequencies by solving the appropriate Boltzmann's equation. This expression along with the wave equation has been used to investigate the nonlinear mutual interaction of a number of electromagnetic waves, propagating in a plasma. Limitations of the present analysis have also been indicated and the physical significance of the results has been discussed. The technique has also been applied to investigate the mutual interaction of amplitude-modulated waves, and the results express a generalization of Luxembourg effect to a number of strong modulated waves.


2009 ◽  
Vol 76 (1) ◽  
pp. 7-17 ◽  
Author(s):  
BENGT ELIASSON ◽  
PADMA KANT SHUKLA

AbstractWe present a derivation of the dispersion relation for electrostatic oscillations in a zero-temperature quantum plasma, in which degenerate electrons are governed by the Wigner equation, while non-degenerate ions follow the classical fluid equations. The Poisson equation determines the electrostatic wave potential. We consider parameters ranging from semiconductor plasmas to metallic plasmas and electron densities of compressed matter such as in laser compression schemes and dense astrophysical objects. Owing to the wave diffraction caused by overlapping electron wave function because of the Heisenberg uncertainty principle in dense plasmas, we have the possibility of Landau damping of the high-frequency electron plasma oscillations at large enough wavenumbers. The exact dispersion relations for the electron plasma oscillations are solved numerically and compared with the ones obtained by using approximate formulas for the electron susceptibility in the high- and low-frequency cases.


Sign in / Sign up

Export Citation Format

Share Document