Numerical Methods for Monitoring Rare Events in Nonlinear Stochastic Systems

2021 ◽  
Vol 22 (6) ◽  
pp. 291-297
Author(s):  
A. A. Kabanov ◽  
S. A. Dubovik

In this article, we consider the development of numerical methods of large deviations analysis for rare events in nonlinear stochastic systems. The large deviations of the controlled process from a certain stable state are the basis for predicting the occurrenceof a critical situation (a rare event). The rare event forecasting problem is reduced to the Lagrange-Pontryagin optimal control problem.The presented approach for solving the Lagrange-Pontryagin problem differs from the approach used earlier for linear systems in that it uses feedback control. In the nonlinear case, approximate methods based on the representation of the system model in the state-space form with state-dependent coefficients (SDC) matrixes are used: the state-dependent Riccati equation (SDRE) and the asymptotic sequence of Riccati equations (ASRE). The considered optimal control problem allow us to obtain a numerical-analytical solutionthat is convenient for real-time implementation. Based on the developed methods of large deviations analysis, algorithms for estimating the probability of occurrence of a rare event in a dynamical systemare presented. The numerical applicability of the developed methods is shown by the example of the FitzHugh-Nagumo model for the analysis of switching between excitable modes. The simulation results revealed an additional problem related to the so-called parameterization problem of the SDC matrices. Since the use of different representations for SDC matrices gives different results in terms of the system trajectory, the choice of matrices is proposed to be carried out at each algorithm iteration so as to provide conditions for the solvability of the Lagrange-Pontryagin problem.

2021 ◽  
Vol 2096 (1) ◽  
pp. 012151
Author(s):  
A A Kabanov ◽  
S A Dubovik

Abstract The paper presents algorithms for simulation rare events in stochastic systems based on the theory of large deviations. Here, this approach is used in conjunction with the tools of optimal control theory to estimate the probability that some observed states in a stochastic system will exceed a given threshold by some upcoming time instant. Algorithms for obtaining controlled extremal trajectory (A-profile) of the system, along which the transition to a rare event (threshold) occurs most likely under the influence of disturbances that minimize the action functional, are presented. It is also shown how this minimization can be efficiently performed using numerical-analytical methods of optimal control for linear and nonlinear systems. These results are illustrated by an example for a precipitation-measured monsoon intraseasonal oscillation (MISO) described by a low-order nonlinear stochastic model.


Sign in / Sign up

Export Citation Format

Share Document