FINITE TIME BLOW-UP IN A MATHEMATICAL MODEL OF SUB-ATOMIC PARTICLE OSCILLATIONS

2018 ◽  
Vol 30 (3) ◽  
pp. 77-101
Author(s):  
Israel Ncube
2019 ◽  
Vol 77 (8) ◽  
pp. 2242-2254 ◽  
Author(s):  
L. Shangerganesh ◽  
N. Nyamoradi ◽  
G. Sathishkumar ◽  
S. Karthikeyan

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yongbin Wang ◽  
Binhua Feng

AbstractIn this paper, we consider the sharp thresholds of blow-up and global existence for the nonlinear Schrödinger–Choquard equation $$ i\psi _{t}+\Delta \psi =\lambda _{1} \vert \psi \vert ^{p_{1}}\psi +\lambda _{2}\bigl(I _{\alpha } \ast \vert \psi \vert ^{p_{2}}\bigr) \vert \psi \vert ^{p_{2}-2}\psi . $$iψt+Δψ=λ1|ψ|p1ψ+λ2(Iα∗|ψ|p2)|ψ|p2−2ψ. We derive some finite time blow-up results. Due to the failure of this equation to be scale invariant, we obtain some sharp thresholds of blow-up and global existence by constructing some new estimates. In particular, we prove the global existence for this equation with critical mass in the $L^{2}$L2-critical case. Our obtained results extend and improve some recent results.


Author(s):  
J. Aguirre ◽  
M. Escobedo

SynopsisWe study the blow-up of positive solutions of the Cauchy problem for the semilinear parabolic equationwhere u is a scalar function of the spatial variable x ∈ ℝN and time t > 0, a ∈ ℝV, a ≠ 0, 1 < p and 1 ≦ q. We show that: (a) if p > 1 and 1 ≦ q ≦ p, there always exist solutions which blow up in finite time; (b) if 1 < q ≦ p ≦ min {1 + 2/N, 1 + 2q/(N + 1)} or if q = 1 and 1 < p ≦ l + 2/N, then all positive solutions blow up in finite time; (c) if q > 1 and p > min {1 + 2/N, 1 + 2q/N + 1)}, then global solutions exist; (d) if q = 1 and p > 1 + 2/N, then global solutions exist.


2020 ◽  
Vol 17 (04) ◽  
pp. 727-763
Author(s):  
Anudeep Kumar Arora ◽  
Svetlana Roudenko

We study the generalized Hartree equation, which is a nonlinear Schrödinger-type equation with a nonlocal potential [Formula: see text]. We establish the local well-posedness at the nonconserved critical regularity [Formula: see text] for [Formula: see text], which also includes the energy-supercritical regime [Formula: see text] (thus, complementing the work in [A. K. Arora and S. Roudenko, Global behavior of solutions to the focusing generalized Hartree equation, Michigan Math J., forthcoming], where we obtained the [Formula: see text] well-posedness in the intercritical regime together with classification of solutions under the mass–energy threshold). We next extend the local theory to global: for small data we obtain global in time existence and for initial data with positive energy and certain size of variance we show the finite time blow-up (blow-up criterion). In the intercritical setting the criterion produces blow-up solutions with the initial values above the mass–energy threshold. We conclude with examples showing currently known thresholds for global vs. finite time behavior.


2008 ◽  
Vol 06 (04) ◽  
pp. 413-428 ◽  
Author(s):  
HARVEY SEGUR

It is known that an "explosive instability" can occur when nonlinear waves propagate in certain media that admit 3-wave mixing. In that context, three resonantly interacting wavetrains all gain energy from a background source, and all blow up together, in finite time. A recent paper [17] showed that explosive instabilities can occur even in media that admit no 3-wave mixing. Instead, the instability is caused by 4-wave mixing, and results in four resonantly interacting wavetrains all blowing up in finite time. In both cases, the instability occurs in systems with no dissipation. This paper reviews the earlier work, and shows that adding a common form of dissipation to the system, with either 3-wave or 4-wave mixing, provides an effective threshold for blow-up. Only initial data that exceed the respective thresholds blow up in finite time.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Zhengguang Guo ◽  
Min Zhao

The present work is mainly concerned with the Dullin-Gottwald-Holm (DGH) equation with strong dissipative term. We establish some sufficient conditions to guarantee finite time blow-up of strong solutions.


Sign in / Sign up

Export Citation Format

Share Document